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a b s t r a c t 

Given an undirected simple graph G , the profile minimization problem (PMP) is to find an ordering of 

the vertices of the graph G such that the sum of the profiles of all its vertices is minimized. The profile 

of the vertex v in position i is defined as max { 0 , i − h v } , where h v is the position of the leftmost vertex 

among all vertices adjacent to v in G . We propose an approach for the PMP, which combines a variable 

neighborhood search (VNS) scheme with the multi-start simulated annealing (MSA) technique. The solu- 

tion delivered by MSA is submitted as input to the VNS component of the method. The VNS algorithm 

heavily relies on a fast insertion neighborhood exploration procedure. We show that the time complexity 

of this procedure is O ( n 2 ), where n is the order of G . We have found empirically that it is advanta- 

geous to give between 50 and 75% of the computation time to MSA and the rest to VNS. The results of 

the computational experiments demonstrate the superiority of our MSA-VNS algorithm over the current 

state-of-the-art metaheuristic approaches for the PMP. Using MSA-VNS, we improved the best known so- 

lutions for 50 well-recognized benchmark PMP instances in the literature. The source code implementing 

MSA-VNS is made publicly available as a benchmark for future comparisons. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The profile minimization problem (PMP) is an important mem- 

ber of a wide set of combinatorial optimization problems on per- 

mutations. It can be stated as follows. Suppose that we are given 

an undirected simple graph G = (V, E) with vertex set V and edge 

set E and a permutation of its vertices p = (p(1) , . . . , p(n )) , where 

n = | V | is the order of G and p ( i ), i ∈ { 1 , . . . , n } , is the vertex in the 

i th position of the permutation. We denote by h p ( i ) the leftmost 

position j < i such that ( p ( i ), p ( j )) ∈ E . If no such j exists, then h p ( i ) 
is set to i . The profile of vertex p ( i ) is defined as the difference be- 

tween i and h p ( i ) . With these notations, the PMP can be expressed 

as 

min 

p∈ �
F (p) = 

n ∑ 

i =1 

(i − h p(i ) ) (1) 

where � is the set of all permutations of V = { 1 , . . . , n } . The largest 

of the vertex profiles 

ϕ(p) = max 
1 � i � n 

(i − h p(i ) ) (2) 
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is called the bandwidth of the graph G . An example of an instance 

of the PMP is shown in Figure 1 . Historically, the PMP has received 

the greatest attention in the development of methods for solving 

sparse systems of linear equations of the form 

Ax = b, (3) 

where A = (a i j ) is a symmetric n × n matrix, b is an n -vector, and 

x is the n -vector of unknowns. The system (3) is represented by 

the graph G in which a pair of vertices i and j are joined by an 

edge if and only if a i j = a ji � = 0 . The problem of solving (3) arises 

in various contexts in science and engineering, especially in situa- 

tions where finite-element analysis is used. In many applications, 

the matrix A is sparse. It is well known that the direct methods 

for solving (3) perform better in terms of execution time when 

nonzero entries of the sparse matrix A are grouped around the 

main diagonal. A possible way to obtain such a matrix is to sym- 

metrically permute the rows and columns of A using a good solu- 

tion p to the PMP instance defined by A . For a thorough discussion 

on the applicability of profile minimization techniques to the so- 

lution of a system of linear equations, the reader is referred, for 

example, to the book of Tewarson (1973) and to the recent sur- 

vey article by Davis et al. (2016) . A number of other applications 

of the PMP have been identified in the literature. These include 

an approach by Xu et al. (2013) for sparse matrix-vector multi- 

plication optimizations using graphics processing units. The au- 
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i = 1 i = 4i = 3i = 2 i = 6i = 5
h = 11 h = 22 h = 13 h = 14 h = 25 h = 46

i-h = 01 i-h = 02 i-h = 23 i-h = 34 i-h = 35 i-h = 26

Fig. 1. Solution p = (1 , . . . , 6) to an instance of the PMP in which h p(1) = h 1 = 1 , 

h 2 = 2 , h 3 = 1 , h 4 = 1 , h 5 = 2 , h 6 = 4 and F (p) = 0 + 0 + 2 + 3 + 3 + 2 = 10 . 

thors have shown that, with matrix bandwidth/profile minimiza- 

tion techniques, both cache usage enhancement and index com- 

pression can be enabled. Higham (2003) considered the PMP in 

the context of small world networks. He investigated the use of 

profile minimization algorithms for so-called small world reorder- 

ing problem. Berry M. et al. (1996) dealt with the PMP in the in- 

formation retrieval setting. They used the reordering algorithms 

to produce narrow-banded hypertext matrices for cluster identi- 

fication. Mueller et al. (2007) reported on an application of pro- 

file reduction techniques in the graph visualization domain. The 

authors used graph ordering heuristics for visual analysis of data 

sets represented by visual similarity matrices. Meijer and de Pol 

(2015) suggested application of profile minimization algorithms in 

symbolic model checking. They addressed the problem of static 

ordering of variables in decision diagrams representing formulas. 

Bolanos M. et al. (2012) considered the PMP in relation to a new 

approach for computing entropy rate for undirected graphs. The 

matrix bandwidth and profile reduction techniques can be used to 

obtain lower bounds for graph entropy. 

Lin and Yuan (1994) have shown the PMP to be NP-hard. There- 

fore, polynomial-time exact algorithms for this problem have been 

proposed only for restricted classes of graphs, e.g., wheels, com- 

plete bipartite graphs ( Lin and Yuan, 1994 ), trees ( Kuo and Chang, 

1994 ), and triangulated triangles ( Guan and Williams, 2003 ). 

Because of the hardness of the problem, the majority of the 

research on the PMP has focused on designing heuristic and 

metaheuristic-based algorithms. One of the most widely studied 

ways of obtaining a satisfactory solution to the problem has been 

the use of constructive methods. They generate permutations by 

starting from an empty solution and gradually assigning the ver- 

tices of the graph to free positions of the permutation. One of the 

first constructive algorithms for the PMP was proposed by Cuthill 

and McKee (1969) . Their algorithm generates the level structure 

rooted at a vertex of minimum degree. The vertices are assigned 

labels (in other words, the vertices are placed in the permuta- 

tion) in increasing level order. George (1971) observed that revers- 

ing the obtained permutation yielded better solutions. In the lit- 

erature, this approach is referred to as the Reverse Cuthill-McKee 

algorithm (RCM). Gibbs et al. (1976) presented another constructive 

technique for reducing the profile of a sparse matrix. This heuristic 

first finds the endpoints of a pseudo-diameter. Then it constructs a 

level structure and finally applies a fast numbering procedure sim- 

ilar to that used in RCM. At about the same time, Gibbs (1976) pro- 

posed a variation of this heuristic, which is currently known as the 

Gibbs-King algorithm. Sloan (1986) developed an algorithm con- 

sisting of two distinct stages. In the first stage, a pair of pseudo- 

peripheral vertices are located. They serve as start and end ver- 

tices for the second (numbering) stage of the method. Other ver- 

tices are chosen according to a priority function composed of two 

terms, one of which tries to reduce the increase in the profile and 

another takes into account the distance between the considered 

vertex and the end vertex. The algorithm was shown to be supe- 

rior to previous methods ( Sloan, 1986 ). Several enhancements to 

the Sloan algorithm have also been proposed ( Duff et al., 1989; 

Kumfert and Pothen, 1997; Reid and Scott, 1999 ). Barnard et al. 

(1995) and Paulino et al. (1994a ); 1994b ) developed algorithms for 

the PMP which are based on spectral properties of the adjacency 

matrix of the graph. In these algorithms, the vertices are ordered 

according to the eigenvector corresponding to the smallest positive 

eigenvalue of the Laplacian matrix associated with the given graph. 

Hu and Scott (2001) presented a multilevel algorithm for profile 

reduction. Their approach combines a graph coarsening technique 

with the Sloan algorithm on the coarsest graph. 

In the literature, there have been several local search or 

metaheuristic-based algorithms proposed for solving the PMP. The 

earliest such algorithm appeared in 1985 by Armstrong (1985) . This 

algorithm is based on the simulated annealing (SA) paradigm. The 

move type that is applied in this implementation of SA is an inter- 

change of two randomly selected vertices. The initial temperature 

is chosen such that almost any interchange is likely to be accepted. 

The algorithm incorporates a reheating mechanism which is trig- 

gered when the system has been cooled too quickly during the 

previous iterations of SA. Another SA algorithm for the PMP has 

been proposed by Lewis (1994) . Like SA approach of Armstrong, 

it proceeds by performing random pairwise interchanges of ver- 

tices. The initial temperature depends on the profile of the start- 

ing solution. Throughout cooling, the temperature is lowered by 

a factor of 0.9 or 0.95. At each iteration, the algorithm computes 

the change in profile as a result of performing a move. Computa- 

tional experience with this algorithm has been reported for several 

SA schedules. Hager (2002) developed two exchange methods for 

improving a given solution to the PMP. One of them, called down 

exchange, involves iteratively shifting a vertex to the right by one 

position at a time. Another exchange method, called up exchange, 

explores the solutions which can be obtained by shifting a vertex 

to the left in a similar manner. When combined together, these 

methods essentially can be categorized as a local search (LS) algo- 

rithm. The neighborhood of a solution in this approach consists of 

all those solutions that can be obtained by relocating a vertex from 

its current position in the permutation to a different one. Reid and 

Scott (2002) presented a significantly improved implementation of 

the Hager’s exchange methods. An especially good performance, in 

terms of running time, was provided by the developed version of 

the up exchange algorithm. Kaveh and Sharafi (2012) proposed an 

algorithm for the PMP, which is based on the metaheuristic opti- 

mization method known as charged system search. Numerical ex- 

periments have demonstrated the effectiveness of this algorithm. 

Koohestani and Poli (2014) presented a hyper-heuristic approach 

based on genetic programming for evolving an enhanced version 

of the Sloan algorithm. The authors combined this version with 

the local search technique. Each step in their implementation of 

local search consists of swapping positions of two vertices. The ap- 

proach was shown to outperform six existing algorithms for the 

PMP. More recently, Koohestani and Poli (2015) developed a ge- 

netic programming system for profile reduction of sparse matrices. 

They tested this method against several state-of-the-art heuristic 

techniques. Sánchez-Oro et al. (2015) proposed a scatter search al- 

gorithm for solving the PMP. They considered two solution im- 

provement methods. One of them relies on performing pairwise 

interchanges of vertices. Another method involves the use of ver- 

tex insertion moves. The authors have found that the latter method 

was much faster than the former one. Sánchez-Oro et al. reported 

the results of extensive computational experiments. Their algo- 

rithm improved best known solutions for a number of benchmark 

PMP instances. 

In some applications, e.g., in direct sparse matrix methods, it is 

important that a satisfactory solution to the PMP be provided very 

quickly. In this respect, metaheuristic-based methods are inferior 

to the fast heuristic techniques. However, considering direct ma- 

trix methods, Lewis (1994) as well as Reid and Scott (2002) have 
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