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a b s t r a c t 

Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is 

called efficient if no other weight vector is at least as good in approximating the elements of the pairwise 

comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the 

pairwise ratios cannot be improved in all non-diagonal positions. We show that the principal eigenvector 

is always weakly efficient, but numerical examples show that it can be inefficient. The linear programs 

proposed test whether a given weight vector is (weakly) efficient, and in case of (strong) inefficiency, an 

efficient (strongly) dominating weight vector is calculated. The proposed algorithms are implemented in 

Pairwise Comparison Matrix Calculator, available at pcmc.online. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Pairwise comparison matrices 

Pairwise comparison matrix ( Saaty, 1977 ) has been a popular 

tool in multiple criteria decision making, for weighting the cri- 

teria and evaluating the alternatives with respect to every cri- 

terion. Decision makers compare two criteria or two alternatives 

at a time and judge which one is more important or better, and 

how many times. Formally, a pairwise comparison matrix is a pos- 

itive matrix A of size n × n , where n ≥ 3 denotes the number 

of items to compare. Reciprocity is assumed: a i j = 1 /a ji for all 

1 ≤ i , j ≤ n . A pairwise comparison matrix is called consistent, 

if a i j a jk = a ik for all i , j , k . Let PCM n denote the set of pairwise 

comparison matrices of size n × n . Once the decision maker pro- 

vides all the n (n − 1) / 2 comparisons, the objective is to find a 

weight vector w = (w 1 , w 2 , . . . , w n ) � ∈ R 

n such that the pairwise 

ratios of the weights, w i /w j , are as close as possible to the ma- 

trix elements a ij . Several methods have been suggested for this 

weighting problem, e.g., the eigenvector method ( Saaty, 1977 ), the 

least squares method ( Bozóki, 2008; Chu, Kalaba, & Spingarn, 1979; 

Fülöp, 2008; Jensen, 1984 ), the logarithmic least squares method 

( Crawford & Williams, 1980; 1985; de Graan, 1980 ), the spanning 
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tree approach ( Bozóki & Tsyganok, 2017; Lundy, Siraj, & Greco, 

2017; Olenko & Tsyganok, 2016; Siraj, Mikhailov, & Keane, 2012a; 

2012b; Tsyganok, 20 0 0; 2010 ) besides many other proposals dis- 

cussed and compared by Golany and Kress (1993) , Choo and Wed- 

ley (2004) , Lin (2007) , Fedrizzi and Brunelli (2010) . Bajwa, Choo, 

and Wedley (2008) not only compare seven weighting methods 

with respect to four criteria, but provide a detailed list of nine ear- 

lier comparative studies, too. 

1.2. Weighting as a multiple objective optimization problem 

The weighting problem itself can be considered as a multi- 

objective optimization problem which includes n 2 − n objective 

functions, namely 
∣∣x i /x j − a i j 

∣∣, 1 ≤ i � = j ≤ n . Let A = 

[
a i j 

]
i, j=1 , ... ,n 

be a pairwise comparison matrix and write the multi-objective op- 

timization problem 

min 

x ∈ R n ++ 

∣∣∣∣ x i 
x j 

− a i j 

∣∣∣∣
1 ≤i � = j≤n 

. (1) 

Efficiency or Pareto optimality ( Miettinen, 1998 , Chapter 2) is a 

key concept in multiple objective optimization and multiple cri- 

teria decision making. See Ehrgott’s historical overview ( Ehrgott, 

2012 ), beginning with Edgeworth (1881) and Pareto (1906) . 

Consider the functions 

f i j : R 

n 
++ → R , i, j = 1 , . . . , n, 
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defined by 

f i j (x ) = 

∣∣∣∣ x i 
x j 

− a i j 

∣∣∣∣, i, j = 1 , . . . , n, (2) 

as in Blanquero, Carrizosa, and Conde (2006 , p. 273). Since f ii (x ) = 

0 for every x ∈ R 

n ++ and i = 1 , . . . , n, these constant functions are 

irrelevant from the aspect of multi-objective optimization, so they 

will be simply left out from the investigations. 

Let the vector-valued function f : R 

n ++ → R 

n (n −1) 
++ defined by its 

components f i j , i, j = 1 , . . . , n, i � = j. Consider the problem of min- 

imizing f over a nonempty set X ⊆ R 

n that can be written in the 

general form of the vector optimization problem 

min 

x ∈ X 
f (x ) . (3) 

With X = R 

n ++ , where the latter denotes the positive orthant in R 

n , 

we get problem (1) in a bit more general form. 

Recall the following basic concepts used for multiple objective 

or vector optimization. A point x̄ ∈ X is said to be an efficient so- 

lution of (3) if there is no x ∈ X such that f (x ) ≤ f ( ̄x ) , f (x ) � = f ( ̄x ) , 

meaning that f i j (x ) ≤ f i j ( ̄x ) for all i � = j with strict inequality for 

at least one index pair i � = j . In the literature, the names Pareto- 

optimal, nondominated and noninferior solution are also used in- 

stead of efficient solution. 

A point x̄ ∈ X is said to be a weakly efficient solution of (3) if 

there is no x ∈ X such that f (x ) < f ( ̄x ) , i.e. f i j (x ) < f i j ( ̄x ) for all i 

� = j . Efficient solutions are sometimes called strongly efficient. 

A point x̄ ∈ X is said to be a locally efficient solution of (3) if 

there exists δ > 0 such that x̄ is an efficient solution in X ∩ B ( ̄x , δ) , 

where B ( ̄x , δ) is a δ-neighborhood around x̄ . The local weak effi- 

ciency is defined similarly for a point x̄ ∈ X, the only difference is 

that weakly efficient solutions are considered instead of efficient 

solutions. 

Several multi-objective optimization models have been pro- 

posed in the research of pairwise comparison matrices. Departing 

from Mikhailov (2006) , Mikhailov and Knowles (2009) include two 

objective functions, the sum of least squares, written for the upper 

diagonal positions, and the number of minimum violations, then 

apply an evolutionary algorithm to generate the Pareto frontier. A 

third objective function, the total deviation from second-order in- 

direct judgments, is added in Siraj, Mikhailov, and Keane (2012c) . 

The n (n − 1) / 2 objective functions 
∣∣x i /x j − a i j 

∣∣, 1 ≤ i � = j ≤
n , of the multi-objective optimization problem (1) can be aggre- 

gated into a single objective function in several ways. Their sum 

gives the weighting method least absolute error ( Choo and Wed- 

ley, 2004 , Section 4, LAE). If their maximum is taken into con- 

sideration, weighting method least worst absolute error ( Choo and 

Wedley, 2004 , Section 4, LWAE) is resulted in. The sum of their 

squares is the classical least squares method ( Bozóki, 2008; Chu 

et al., 1979; Fülöp, 2008; Jensen, 1984 ). A (parametric) linear com- 

bination of the sum and the maximum is proposed by Jones and 

Mardle (2004) to find a compromise weight vector. A similar idea 

is applied in the proposal of Dopazo and Ruiz-Tagle (2011) , devel- 

oped for group decision problems with incomplete pairwise com- 

parison matrices. 

In the rest of the paper efficiency for problem (1) , including 

n (n − 1) / 2 objective functions, is considered. The explicit presen- 

tation will be unavoidable for the problem specific concept of in- 

ternal efficiency introduced recently in Bozóki (2014) . 

1.3. Efficiency of weight vectors 

Let w = (w 1 , w 2 , . . . , w n ) 
� be a positive weight vector. 

Definition 1.1. Weight vector w is called efficient for (1) if no pos- 

itive weight vector w 

′ = (w 

′ 
1 , w 

′ 
2 , . . . , w 

′ 
n ) 

� exists such that ∣∣∣∣a i j −
w 

′ 
i 

w 

′ 
j 

∣∣∣∣ ≤
∣∣∣∣a i j −

w i 

w j 

∣∣∣∣ for all 1 ≤ i, j ≤ n, (4) 

∣∣∣∣a k� −
w 

′ 
k 

w 

′ 
� 

∣∣∣∣ < 

∣∣∣a k� −
w k 

w � 

∣∣∣ for some 1 ≤ k, � ≤ n. (5) 

Weight vector w is called inefficient for (1) if it is not efficient 

for (1) . 

If weight vector w is inefficient for (1) and weight vector w 

′ 
fulfills (4) –(5) , we say that w 

′ dominates w . Note that dominance 

is transitive. 

It follows from the definition that an arbitrary rescaling does 

not influence (in)efficiency. 

Remark 1. A weight vector w is efficient for (1) if and only if c w 

is efficient for (1) , where c > 0 is an arbitrary scalar. 

Example 1.1. Consider four criteria C 1 , C 2 , C 3 , C 4 , pairwise com- 

parison matrix A ∈ PCM 4 and its principal right eigenvector w as 

follows: 

A = 

⎛ 

⎜ ⎝ 

1 1 4 9 

1 1 7 5 

1 / 4 1 / 7 1 4 

1 / 9 1 / 5 1 / 4 1 

⎞ 

⎟ ⎠ 

, 

w = 

⎛ 

⎜ ⎝ 

0 . 404518 

0 . 436173 

0 . 110295 

0 . 049014 

⎞ 

⎟ ⎠ 

, w 

′ = 

⎛ 

⎜ ⎝ 

0 . 441126 

0 . 436173 

0 . 110295 

0 . 049014 

⎞ 

⎟ ⎠ 

. 

In order to prove the inefficiency of the principal right eigenvector 

w , let us increase its first coordinate: w 

′ 
1 := 9 w 4 = 0 . 441126 , w 

′ 
i 

:= 

w i , i = 2 , 3 , 4 . The consistent approximations generated by weight 

vectors w , w 

′ , 

[
w i 

w j 

]
= 

⎛ 

⎜ ⎝ 

1 0 . 9274 3 . 6676 8 . 2531 

1 . 0783 1 3 . 9546 8 . 8989 

0 . 2727 0 . 2529 1 2 . 2503 

0 . 1212 0 . 1124 0 . 4 4 4 4 1 

⎞ 

⎟ ⎠ 

, (6) 

[
w 

′ 
i 

w 

′ 
j 

]
= 

⎛ 

⎜ ⎝ 

1 1 . 0114 3 . 9995 9 

0 . 9888 1 3 . 9546 8 . 8989 

0 . 2500 0 . 2529 1 2 . 2503 

0 . 1111 0 . 1124 0 . 4 4 4 4 1 

⎞ 

⎟ ⎠ 

, 

show that inequality (4) holds for all 1 ≤ i , j ≤ 4, and the strict 

inequality (5) holds for ( k , � ) ∈ {(1, 2), (1, 3), (1, 4), (2, 1), (3, 

1), (4, 1)}. For example, with k = 1 , � = 2 , | w 

′ 
1 

w 

′ 
2 

− a 12 | = | 1 . 0114 −
1 | = 0 . 0114 < | w 1 

w 2 
− a 12 | = | 0 . 9274 − 1 | = 0 . 0726 . Weight vector w 

′ 
dominates w . Note that the principal right eigenvector w ranks the 

criteria as C 2 �C 1 �C 3 �C 4 , while the dominating weight vector w 

′ 
ranks them as C 1 �C 2 �C 3 �C 4 . 

Blanquero et al. (2006) considered the local variant of effi- 

ciency: 

Definition 1.2. Weight vector w is called locally efficient for (1) if 

there exists a neighborhood of w , denoted by V ( w ), such that no 

positive weight vector w 

′ ∈ V ( w ) fulfilling (4) –(5) exists. 

Weight vector w is called locally inefficient if it is not locally 

efficient. 

Another variant of (in)efficiency has been introduced by Bozóki 

(2014) : 
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