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a b s t r a c t 

In robust optimization, the general aim is to find a solution that performs well over a set of possible 

parameter outcomes, the so-called uncertainty set. In this paper, we assume that the uncertainty size 

is not fixed, and instead aim at finding a set of robust solutions that covers all possible uncertainty set 

outcomes. We refer to these problems as robust optimization with variable-sized uncertainty. We discuss 

how to construct smallest possible sets of min–max robust solutions and give bounds on their size. 

A special case of this perspective is to analyze for which uncertainty sets a nominal solution ceases 

to be a robust solution, which amounts to an inverse robust optimization problem. We consider this 

problem with a min–max regret objective and present mixed-integer linear programming formulations 

that can be applied to construct suitable uncertainty sets. 

Results on both variable-sized uncertainty and inverse problems are further supported with experi- 

mental data. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Robust optimization has become a vibrant field of research 

with fruitful practical applications, of which several recent sur- 

veys give testimonial (see Aissi, Bazgan, & Vanderpooten, 2009; 

Ben-Tal, Ghaoui, & Nemirovski., 2009; Bertsimas, Brown, & Carama- 

nis., 2011; Chassein & Goerigk., 2016b; Goerigk & Schöbel., 2016; 

Gorissen, Yanıko ̆glu, & den Hertog., 2015 ). Two of the most widely 

used approaches to robust optimization are the so-called (abso- 

lute) min–max and min–max regret approaches (see, e.g., the clas- 

sic book on the topic Kouvelis & Yu., 1997 ). For some combinatorial 

optimization problem of the form 

(P ) min 

{
c t x : x ∈ X ⊆ { 0 , 1 } n }

with a set of feasible solutions X , let U denote the set of all possi- 

ble scenario outcomes for the objective function parameter c. Then 

the min–max counterpart of the problem is given as 

min 

x ∈X 
max 

c∈U 
c t x 

and the min–max regret counterpart is given as 

min 

x ∈X 
reg(x, U ) 
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with 

reg(x, U ) := max 
c∈U 

(c t x − opt(c)) 

where opt(c) denotes the optimal objective value for problem (P ) 

with objective c. 

In the recent literature, the problem of finding suitable sets 

U has come to the focus of attention, see Bertsimas and Sim. 

(2004) , Bertsimas, Pachamanova, and Sim. (2004) and Bertsimas 

and Brown. (2009) . This acknowledges that the set U might not 

be “given” by a real-world practitioner, but is part of the responsi- 

bility of the operations researcher. 

In this paper we consider the question how robust solutions 

change when the size of the uncertainty set changes. We call this 

approach variable-sized robust optimization and analyze how to 

find minimal sets of robust solutions that can be applied to any 

possible uncertainty sets. This way, the decision maker is pre- 

sented with candidate solutions that are robust for different-sized 

uncertainty sets, and he can choose which suits him best. Results 

on this approach for min–max robust optimization are discussed 

in Section 2 . 

The notion of variable uncertainty has also been used in 

Poss. (2013) , but is different to our approach: In their paper, 

the size of the uncertainty set depends on the solution x, i.e., 

U = U(x ) , while we use size parameter that does not depend 

on x . Further related is the notion of parametric programming 
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(see, e.g., Carstensen, 1983 ). Our approach can be seen as being 

a parametric robust optimization problem. 

As a special case of variable-sized robust optimization, we con- 

sider the following question: Given only a nominal problem (P ) 

with objective ˆ c , how large can an uncertainty set become, such 

that the nominal solution still remains optimal for the result- 

ing robust problem? Due to the similarity in our question to in- 

verse optimization problems, see, e.g., Ahuja and Orlin. (2001) , 

Heuberger (2004) , Alizadeh, Burkard, and Pferschy (2009) and 

Nguyen and Chassein. (2015) we denote this as the inverse per- 

spective to robust optimization. The approach from Carrizosa and 

Nickel (2003) is remotely related to our perspective. There, the au- 

thors define the robustness of a solution via the largest possible 

deviation of the problem coefficients in a facility location setting. 

In a similar spirit, the R-model for robust satisficing ( Jaillet, Jena, 

Ng, & Sim., 2016 ) aims at finding a solution that remains feasible 

for an uncertainty set that is as large as possible. Our approach 

can also be used as a means of sensitivity analysis. Given several 

solutions that are optimal for some nominal problem, the decision 

maker can choose one that is most robust in our sense. In the same 

vein, one can check which parts of a solution are particularly frag- 

ile, and strengthen them further. This approach is presented for 

min–max regret in Section 3 . 

Our paper closes with a conclusion and discussion of further 

research directions in Section 4 . 

2. Variable-sized min–max robust optimization 

In this section, we analyze how optimal robust solutions change 

when the size of the uncertainty set increases. We assume to 

have information about the midpoint (nominal) scenario ˆ c , and the 

shape of the uncertainty set U . The actual size of the uncertainty 

set is assumed to be uncertain. 

More formally, we assume that the uncertainty set is given in 

the form 

U λ = { ̂  c } + λB 

where B is a convex set containing the origin and ˆ c > 0 is the mid- 

point of the uncertainty set. The parameter λ ≥ 0 is an indicator 

for the size of the uncertainty set. For λ = 0 , we have U 0 = { ̂ c } , 
i.e., the nominal problem, and for λ → ∞ we obtain the extreme 

case of complete uncertainty. 

We consider the min–max robust optimization problem 

min 

x ∈X 
max 
c∈U λ

c t x. ( P ( λ) ) 

The goal of variable-sized robust optimization is to compute a min- 

imal set S ⊂ X such that for any λ ≥ 0 , S contains a solution that 

is optimal for P (λ) . Note that for λ = 0 , set S must contain a so- 

lution ˆ x that is optimal for the nominal problem. By increasing λ, 

we trace how this solution needs to change with increasing degree 

of uncertainty. 

Section 2 is structured as follows. In Section 2.1 , we demon- 

strate the close relation between the variable-sized robust prob- 

lem and a bicriteria optimization problem. We consider different 

shapes for set B in Section 2.2 and discuss the resulting variable- 

sized robust optimization problems. In Section 2.3 , we transfer the 

general results of the previous section to the shortest path prob- 

lem. We end the discussion of the shortest path problem with a 

case study. 

2.1. Relation to bicriteria optimization 

We reformulate the objective function of P (λ) : 

max 
c∈U λ

c t x = ̂

 c t x + max 
c∈ λB 

c t x = 

ˆ c t x + max 
˜ c ∈ B 

λ˜ c t x 

= ̂

 c t x + λ max 
˜ c ∈ B 

˜ c t x = f 1 (x ) + λ f 2 (x ) 

where f 1 (x ) = ˆ c t x and f 2 (x ) = max c∈ B c t x . Note that both functions 

are convex. It is immediate that the variable-sized robust optimiza- 

tion problem is closely related to the bicriteria optimization prob- 

lem: 

min 

x ∈X 

(
f 1 (x ) 
f 2 (x ) 

)

We define the map F : X → R 

2 + , F (x ) = ( f 1 (x ) , f 2 (x )) t which 

maps every feasible solution in the objective space. Further, we 

define the polytope V = conv ({ F (x ) : x ∈ X } ) + R 

2 + . We call a solu- 

tion x ∈ X an efficient extreme solution if F (x ) is a vertex of V . De- 

note the set of all efficient extreme solutions with E . We call two 

different solutions x 	 = x ′ equivalent if F (x ) = F (x ′ ) . Let E min ⊂ E be 

a maximal subset such that no two solutions of E min are equiva- 

lent. The next lemma gives the direct relation between E min and 

the variable-sized robust optimization problem. 

Lemma 1. E min is a solution of the variable sized robust optimization 

problem. 

Proof. We need to prove two properties: 

(I) For every λ ≥ 0 there exists a solution in E min which is optimal 

for P (λ) . 

(II) E min is a smallest possible set with property (I). 

(I) Let λ ≥ 0 be fixed. We transfer the problem P (λ) in the ob- 

jective space. The optimal value of P (λ) is equal to the optimal 

value of problem O (λ) since each optimal solution of this prob- 

lem is a vertex of V . 

min 

v ∈V 
v 1 + λv 2 ( O ( λ) ) 

Let v ∗ be the optimal solution of O (λ) . By definition, E min con- 

tains a solution x ∗ with F (x ) = v ∗, i.e., an optimal solution for 

P (λ) . 

(II) Note that there is a one-to-one correspondence between ver- 

tices of V and solutions in E min . Since for each vertex v ′ of V
a λ′ ≥ 0 exists such that v ′ is optimal for O (λ) , it follows that 

E min is indeed minimal. Note that it is important to ensure that 

E min contains no equivalent solutions. �

Different methods are known to compute E min . The complex- 

ity of these methods depends linearly on the size of E min . To find 

an additional efficient extreme solution a weighted sum problem 

of the form min x ∈X f 1 (x ) + λ f 2 (x ) needs to be solved. In the fol- 

lowing, we denote by T the time which is necessary to solve the 

nominal problem min x ∈X c T x and by T ′ the time that is necessary 

to solve a weighted sum problem. Note that if f 2 (x ) is linear in x, 

O (T ′ ) = O (T ) . We restate the following well known result (see e.g. 

Mordechai, 1986 ). 

Lemma 2. E min can be computed in O (|E min | T ′ ) . 
Using Lemma 1 , we can transfer this result to the variable-sized 

robust problem. 

Theorem 3. The variable-sized robust problem can be solved in 

O (|E min | T ′ ) . 

2.2. General results 

We assume that B is the unit ball of some norm. An overview 

of different norms and the corresponding functions max c∈U λ c t x is 

presented in Table 1 . This list does not cover the large set of dif- 

ferent uncertainty sets which is studied in the literature. For more 
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