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a b s t r a c t 

In a recent work, Muter, Birbil, and Bülbül, (2013) identified and characterized a general class of linear 

programming (LP) problems – known as problems with column-dependent-rows (CDR-problems). These 

LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of 

structural linking constraints, in which variables from both groups appear together. In a typical CDR- 

problem, the number of linking constraints grows very quickly with the number of variables, which mo- 

tivates generating both columns and their associated linking constraints simultaneously on-the-fly. In this 

paper, we expose the decomposable structure of CDR-problems via Benders decomposition. However, this 

approach brings on its own theoretical challenges. One group of variables is generated in the Benders 

master problem, while the generation of the linking constraints is relegated to the Benders subproblem 

along with the second group of variables. A fallout of this separation is that only a partial description 

of the dual of the Benders subproblem is available over the course of the algorithm. We demonstrate 

how the pricing subproblem for the column generation applied to the Benders master problem does also 

update the dual polyhedron and the existing Benders cuts in the master problem to ensure convergence. 

Ultimately, a novel integration of Benders cut generation and the simultaneous generation of columns 

and constraints yields a brand-new algorithm for solving large-scale CDR-problems. We illustrate the ap- 

plication of the proposed method on a time-constrained routing problem. Our numerical experiments 

confirm the outstanding performance of the new decomposition method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

We have recently developed a simultaneous column-and-row 

generation methodology ( Muter, Birbil, & Bülbül, 2013a ) for a gen- 

eral class of linear programming problems. The. problems that be- 

long to this class have an interesting structure In their most gen- 

eral form, they feature two sets of constraints with mutually exclu- 

sive groups of variables in addition to a set of linking constraints, 

in which variables from both groups appear together. The list of 

applications which fit into this framework and satisfy the assump- 

tions of our analysis include multi-stage cutting stock ( Zak, 2002 ), 

P-median facility location ( Avella, Sassano, & Vasilev, 2007 ), multi- 

commodity capaci tated network design ( Frangioni & Gendron, 

2009; Katayama, Chen, & Kubo, 2009 ), two-stage batch schedul- 

ing ( Wang & Tang, 2010 ), robust crew pairing ( Muter et al., 2013b ), 
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and time-constrained routing ( Avella, D’Auria, & Salerno, 2006; 

Muter, Birbil, Bülbül, & Ş ahin, 2012 ). These problems are fre- 

quently formulated with too many variables to be included ex- 

plicitly in the model at the outset and are therefore typically at- 

tacked by column generation techniques ( Dantzig & Wolfe, 1960; 

Lübbecke & Desrosiers, 2005 ). The additional challenge here is 

that the number of linking constraints is either too large which 

precludes us from incorporating these constraints directly in the 

formulation, or an explicit description of the full set of linking 

constraints is only available in the presence of the entire set of 

variables. Therefore, whenever these problems are solved by col- 

umn generation, the introduction of new columns leads to the 

generation of new linking constraints. That is, the sequence of 

LPs solved during column generation does not only grow column- 

wise but also row-wise through the addition of new linking con- 

straints. Consequently, we refer to this class of formulations as 

problems with column-dependent-rows , or more concisely as CDR- 

problems. A key point here is that these new linking constraints 

are structural constraints required for the validity of the formu- 

lation. This is a defining property which clearly distinguishes our 
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work from the branch-and-cut-and-price setting as we elaborate 

upon in the next paragraph. The primary challenge in solving 

CDR-problems via column generation is to price out the columns 

absent from the formulation correctly as the dual variables as- 

sociated with the missing linking constraints are unknown. To 

overcome this difficulty, we have developed a thinking-ahead ap- 

proach , which computes the correct values of the dual variables 

of the missing linking constraints as if they were present in the 

formulation ( Muter et al., 2013a ). Recently, simultaneous genera- 

tion of columns and rows has also been studied in other settings 

by Frangioni and Gendron (2013) and Sadykov and Vanderbeck 

(2013) . 

A large number of problems solved by column generation orig- 

inally involve integrality constraints for some or all of the vari- 

ables. To solve such problems to optimality, column generation is 

generally integrated into the branch-and-bound method giving rise 

to the branch-and-price method ( Barnhart, Johnson, Nemhauser, 

Savelsbergh, & Vance, 1998 ). Generating strengthened bounds at 

the nodes of the branch-and-price tree can be achieved through 

valid inequalities obtained by solving a separation subproblem. 

This use of column and row generation together in a branch- 

and-bound setting is known as branch-and-cut-and-price; see the 

works of Desaulniers, Desrosiers, and Spoorendonk (2011) and 

Desrosiers and Lübbecke (2011) . In the branch-and-cut-and-price 

framework, rows and columns are generated sequentially and in- 

dependently from each other by solving the separation and pricing 

subproblems, respectively. This is fundamentally different from the 

setting in Muter et al. (2013a) and in this paper, which requires us 

to generate both columns and their associated linking constraints 

interdependently on-the-fly. 

In this paper, we extend our previous work on CDR-problems 

and solve them by using Benders decomposition ( Benders, 1962 ). 

This decomposition technique partitions the variables into two 

smaller problems –the Benders master problem and the Benders 

subproblem– so that the overall problem can be handled effi- 

ciently with an iterative algorithm known as delayed cut gener- 

ation. Rahmaniani, Crainic, Gendreau, and Rei (2017) provides a 

comprehensive survey of applications solved by Benders decom- 

position, including capacitated facility location ( Fischetti, Ljubi ́c, & 

Sinnl, 2016 ), production routing ( Adulyasak, Cordeau, & Jans, 2015 ), 

multi-period hub location ( Gelareh, Monemi, & Nickel, 2015 ), and 

strip packing ( Côté, Dell’Amico, & Iori, 2014 ). As we shall dis- 

cuss in the next section, the structure of CDR-problems qualifies 

for such a decomposition. However, we observe that a direct ap- 

plication of Benders decomposition is not possible because we 

do not have the complete description of the dual of the Ben- 

ders subproblem – the dual slave problem – during the itera- 

tions. In particular, the dimension of the feasible region of the 

dual slave problem – the dual polyhedron – increases as new 

linking constraints are introduced. This novel structure leads us 

to reconsider the fundamental parts of Benders decomposition; 

solving a sequence of relaxed Benders master problems and ap- 

plying delayed cut generation by solving the dual slave problem 

in between. The proposed analysis along with our observations 

constitute the main contributions of this work: We develop a 

new Benders decomposition methodology for solving large-scale 

linear programs with column-dependent-rows. This approach in- 

duces a novel integration of the delayed (Benders) cut generation 

and simultaneous column-and-row generation for solving large- 

scale CDR-problems. To illustrate the application of the proposed 

method, we explain each step on the time-constrained routing 

problem. Our numerical experiments confirm that the new decom- 

position method outperforms not only the off-the-shelf solvers but 

also our previous algorithm for CDR-problems presented in Muter 

et al. (2013a) . 

2. Motivation 

We devote this section to explaining our motivation for devel- 

oping a new Benders decomposition methodology for solving CDR- 

problems. To this end, we first revisit the generic mathematical 

model for CDR-problems: 

( MP ) minimize 
∑ 

k ∈ K 
c k y k + 

∑ 

n ∈ N 
d n x n , 

subject to 

∑ 

k ∈ K 
A jk y k ≥a j , j ∈ J, (MP-y) 

∑ 

n ∈ N 
B mn x n ≥ b m 

, m ∈ M, (MP-x) 

∑ 

k ∈ K 
C ik y k + 

∑ 

n ∈ N 
D in x n ≥ r i , i ∈ I(K, N) , (MP-yx) 

y k ≥ 0 , k ∈ K, x n ≥ 0 , n ∈ N. 

In general, we allow for exponentially many y - and x - vari- 

ables in the master problem formulation ( MP ) above and therefore 

reckon that any generic viable algorithm for solving CDR-problems 

must be able to generate both types of variables dynamically in a 

column generation framework. The cardinality of the constraints 

(MP-y) and (MP-x) is polynomially bounded in the size of the 

problem, and these are directly incorporated into the model. How- 

ever, the cardinality of the set of linking constraints (MP-yx) de- 

pends on | K | and | N | and is either theoretically or practically too 

large – see Example 3.1 in Section 3 . Note that the dependence 

of the linking constraints on the variables is conveyed through the 

notation I ( K , N ). This non-standard structure of ( MP ) prompts us to 

search for alternatives to handle the linking constraints (MP-yx) in 

a column generation scheme. 

A key observation that motivates the solution approach for 

CDR-problems in this paper is that the constraints (MP-y) and 

(MP-x) impose conditions only on the y - and x -variables, respec- 

tively. Therefore, these two groups of variables can be handled in 

two separate problems. This is a typical structure amenable to Ben- 

ders decomposition. In particular, we project out the x -variables 

and relegate them to the subproblem while the y -variables are 

kept in the master problem. This choice is not arbitrary; the un- 

derlying reason will be clear in Section 3.1 , where we qualify the 

y -variables as the primary set of variables in some sense. Formally, 

we write 

minimize 
∑ 

k ∈ K 
c k y k + z( y ) , 

subject to 

∑ 

k ∈ K 
A jk y k ≥ a j , j ∈ J, 

y k ≥ 0 , k ∈ K, 

(1) 

where for a fixed ȳ we have 

( BSP ) z( ̄y ) = minimize 
∑ 

n ∈ N 
d n x n , 

(v m 

) subject to 

∑ 

n ∈ N 
B mn x n ≥ b m 

, m ∈ M, 

(w i ) 
∑ 

n ∈ N 
D in x n ≥ r i −

∑ 

k ∈ K 
C ik ̄y k , i ∈ I(K, N) , 

x n ≥ 0 , n ∈ N. 

(2) 

This problem is referred to as the Benders subproblem , where the 

dual variables are indicated in parentheses to the left of their re- 

spective constraints. Using LP duality, we obtain the equivalent 



Download English Version:

https://daneshyari.com/en/article/4959438

Download Persian Version:

https://daneshyari.com/article/4959438

Daneshyari.com

https://daneshyari.com/en/article/4959438
https://daneshyari.com/article/4959438
https://daneshyari.com

