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a b s t r a c t 

Container terminals around the world regularly re-sort the containers they store according to their re- 

trieval times in a process called pre-marshalling, thus ensuring containers are efficiently transferred 

through the terminal. State-of-the-art algorithms struggle to find optimal solutions for real-world sized 

pre-marshalling problems. To this end, we introduce an improved exact algorithm using an iterative deep- 

ening branch and bound search, including a novel lower bound computation, a new branching heuristic, 

new dominance rule and a new greedy partial solution completion heuristic. Our approach finds opti- 

mal solutions for 161 more instances than the state-of-the-art algorithm on two well known, difficult 

pre-marshalling datasets, and solves all instances in three other datasets in just several seconds. Further- 

more, we find optimal solutions for a majority of real-world sized instances, and feasible solutions with 

very low relaxation gaps on those instances where no optimal could be found. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The container trade has grown over the past decades at a 

tremendous rate, with 1687 million tons of cargo shipped in con- 

tainers in 2015, a 69% increase over 2005, and a 355% increase over 

1995 ( UNCTAD, 2016 ). The world’s busiest container port, in Shang- 

hai, China, had a throughput of 36.5 million TEU 

1 in 2015, and the 

port with the highest throughput in Europe, Rotterdam, Nether- 

lands, transferred 12.3 million TEU. With the global container mar- 

ket estimated to grow 4.4% per year through 2018 ( Danish Ship 

Finance, 2017 ), effective decision support algorithms for managing 

containers along their journey are becoming critical to the opera- 

tions of liner carriers and container terminals. 

Efficient operations in container terminals are particularly im- 

portant for shippers, as delays and uncertainty in the logistics 

chain force companies and organizations to maintain larger safety 

stocks to avoid interruptions in production and sales ( Vernimmen, 

Dullaert, & Engelen, 2007 ). Terminals that perform poorly or have 

high costs will lose business to competitors, as, according to 

Psaraftis (2004) , shipping lines can relatively easily and quickly 

switch hubs. Port and terminal operations therefore have a strong 
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1 TEU stands for twenty-foot equivalent unit and represents a 20 foot intermodal 

container. 

interest in decision support tools that can help them maintain or 

even improve their efficiency in the face of increasing container 

volumes. 

Delays can occur in container ports in a variety of areas and for 

a number of reasons, including during the transfer of containers 

between terminals ( Tierney, Voß, & Stahlbock, 2014 ), intra-terminal 

handling and vehicle dispatching ( Grunow, Günther, & Lehmann, 

2006 ), and due to incorrect stacking in the yard (see Fig. 1 for an 

overview of a terminal). Our focus in this work is on delays in 

the yard, as containers must be quickly moved in and out of the 

potentially thousands of stacks in this part of the terminal. There 

are two central problems regarding the retrieval of containers from 

the yard once containers have been placed through, e.g., the con- 

tainer stacking problem ( Dekker, Voogd, & van Asperen, 2006 ): the 

container (or blocks) relocation problem, in which containers are 

extracted from a set of stacks (see, e.g., Kim & Hong, 2006 ), and 

the container pre-marshalling problem (CPMP), in which contain- 

ers are re-sorted in stacks ( Lee & Hsu, 2007 ), the latter of which is 

the main focus of this article. 

In the CPMP, a set of stacks are sorted by a rail-mounted gantry 

crane (RMGC) according to the time each container is expected to 

leave the stacks. Solving the CPMP prevents containers with late 

exit times from blocking containers with early exit times, helping 

to ensure efficient yard operations. The goal of the CPMP is to find 

a minimal sequence of container moves from the top of one stack 

to the top of another stack such that no container blocks the re- 

moval of a container that must leave before it. Solving the CPMP 
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Fig. 1. Overview of a sea container terminal’s operations, adapted from Tierney 

(2015) . 

is thus an important task for container terminals to perform when 

the terminal is not busy so that it is prepared for peak throughput 

periods. 

In this paper, we introduce an improved exact algorithm based 

on an iterative deepening search that includes the following novel 

components: 

1. an improved, tighter version of the lower bound introduced in 

Bortfeldt and Forster (2012) , 

2. a new dominance rule addressing containers with the same re- 

trieval time, 

3. a greedy heuristic for completing partial CPMP solutions, and 

4. an effective branching strategy that uses the improved lower 

bound along with several tie breaking criteria. 

The improved lower bound we introduce focuses on special 

cases of the CPMP that occur when all (or most) stacks of contain- 

ers are not correctly sorted. By taking into account extra container 

movements into the lower bound that must occur in the cases we 

present, the overall search tree can be significantly pruned. The 

new dominance rule breaks symmetries that occur when multiple 

containers have the same retrieval time, which is a common oc- 

currence in container terminals. Our greedy heuristic shares simi- 

larities with well-known CPMP heuristics in the literature, such as 

the lowest priority first heuristic from Expósito-Izquierdo, Melián- 

Batista, and Moreno-Vega (2012) , but is modified to only focus 

on simple moves and to be fast to execute. Finally, our branching 

strategy is a well-known one, namely branching on the node with 

the best lower bound value. However, in the CPMP there are often 

ties for the best lower bound, thus we introduce a number of tie 

breaking criteria based on properties of the resulting bays when 

performing moves. 

Our approach solves 161 more instances to optimality than the 

state of the art on the two main CPMP datasets from Caserta, 

Voß, Brabazon, and Tarantino (2009) and Bortfeldt and Forster 

(2012) , and solves all instances to optimality on three further 

CPMP datasets. On instances already solved by state-of-the-art 

techniques, such as those in Tierney, Pacino, and Voß (2016) and 

van Brink and van der Zwaan (2014) , our algorithm reduces the 

both the number of nodes and CPU time required to solve in- 

stances drastically, in some cases solving problems after only sev- 

eral search nodes that require tens of thousands of nodes with 

other approaches. Furthermore, our greedy, partial solution com- 

pletion heuristic allows us to find feasible solutions on 58% of the 

instances for which we do not find the optimal value. These fea- 

sible solutions are in many cases better than the state-of-the-art 

biased random-key metaheuristic approach from Hottung and Tier- 

ney (2016) . 

We organize this paper as follows. After describing and formal- 

izing the CPMP in Section 2 we provide a comprehensive litera- 

ture review of the CPMP and related problems in Section 3 . We 

describe our branch and bound approach in Section 4 , including 

a discussion of the new dominance rule and branching strategy. 

We present our improved lower bound in Section 5 and give de- 

tailed computational results in Section 6 , finally concluding and 

discussing future work in Section 7 . 

2. The pre-marshalling problem 

Container terminals consist of several input/output areas where 

containers are brought into or out of the container terminal and 

a large buffer area, called the yard, as shown in Fig. 1 . Containers 

are temporarily stored in this area while they are transferred be- 

tween modes of transportation or are transshipped between liner 

shipping services. The figure shows one way of organizing the yard 

using rail mounted gantry cranes, in which the containers are or- 

ganized into rectangular blocks containing multiple rows of con- 

tainer stacks . 

A bay consists of a row of stacks and is shown in Fig. 2 . Each 

bay contains several stacks with a common height restriction mea- 

sured in tiers of containers. No containers may be stacked above 

the maximum height, which is usually due to the height of the 

crane. 

The pre-marshalling of containers involves re-sorting them ac- 

cording to their retrieval times, ensuring efficient terminal opera- 

tions when containers are removed from the bay. Formally, a bay 

contains a set of C containers (container 1, container 2, . . . , con- 

tainer C ), S stacks (stack 1, stack 2, . . . , st ack S ), and a maximum 

height, modeled as a set T of tiers. The nonnegative integer-valued 

function group ( s , t ) gives the exit time or group 2 of the container 

at stack s , tier t , with group (s, t) = 0 if no container is located at 

position s , t . 

A stack is said to be non-misoverlaid if it has no misoverlaid con- 

tainers, meaning no container is placed above a container with a 

lower group value. The goal of pre-marshalling is to remove all 

misoverlays from the bay with as few container moves as possible. 

Thus, each stack should be sorted in non-increasing order from the 

ground up according to the group of each container. A bay has no 

misoverlays iff group (s, t) ≥ group (s, t + 1) for all s ∈ S , t ∈ T �{| T |}. 

Note that multiple containers may have the same group value, and 

these containers do not misoverlay each other. The CPMP is shown 

to be NP-hard in Caserta, Schwarze, and Voß (2011) . 

In Fig. 3 , we present an example solution for pre-marshalling a 

bay with misoverlaid containers. The solution shown is optimal, as 

at least three moves are required to solve the problem given that 

there are three misoverlaid containers. 

2.1. Assumptions 

The model of the CPMP we present is common in the liter- 

ature (see Caserta, Voß, Brabazon, and Tarantino, 2009; Lee and 

Chao, 2009; Lee and Hsu, 2007 among others), but we discuss 

some of the implicit assumptions here anyway. First, the CPMP op- 

erates only on a single bay, even though there are many bays in 

the yard. This assumption follows from the literature (see, e.g., Lee 

& Hsu, 2007 ) and is based on several considerations, a primary 

one being safety constraints within many terminals that prevent 

inter-bay crane movements with containers. Furthermore, RMGCs 

can quickly move containers within a single bay, however, moving 

the RMGC between bays takes a significant amount of time. The 

single bay assumption therefore avoids move costs in the objec- 

tive function. In addition, this assumption prevents us from having 

2 A group is called a priority in Expósito-Izquierdo, Melián-Batista, and Moreno- 

Vega (2012) and Caserta, Voß, Brabazon, and Tarantino (2009) and exit time in 

Tierney and Malitsky (2015) . 
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