
Register allocation for fine grain threads on

multicore processor

D.C. Kiran a,*, S. Gurunarayanan b, Janardan P. Misra a, Munish Bhatia a

aDepartment of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani,
333031 Rajasthan, India
bDepartment of Electrical Electronics and Instrumentation, Birla Institute of Technology and Science Pilani, 333031 Rajasthan, India

Received 13 October 2014; revised 3 April 2015; accepted 14 April 2015
Available online 23 November 2015

KEYWORDS

Multicore;

Compiler;

Fine grain parallelism;

Scheduling;

Register allocation

Abstract A multicore processor has multiple processing cores on the same chip. Unicore and mul-

ticore processors are architecturally different. Since individual instructions are needed to be sched-

uled onto one of the available cores, it effectively decreases the number of instructions executed on

the individual core of a multicore processor. As each core of a multicore processor has a private

register file, it results in reduced register pressure. To effectively utilize the potential benefits of

the multicore processor, the sequential program must be split into small parallel regions to be

run on different cores, and the register allocation must be done for each of these cores. This article

discusses register allocating heuristics for fine grained threads which can be scheduled on multiple

cores. Spills are computed and its effect on speed-up, power consumption and performance per

power is compared for a RAW benchmark suite.
� 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coupled with technological advancement in the field of com-
puter architecture and relentless demand for faster processing
has led to the development of multicore processors. A multi-

core processor has multiple processor cores on same processor

chip. Each individual core has a separate register file and is

capable of executing complete Instruction Set Architecture
(ISA). In order to exploit the capabilities of multicore proces-
sors, a significant amount of research in the area of code par-

allelization and multiprocessing has been carried out. An
application running on a multicore system does not guarantee
the performance improvement until the application has been
explicitly designed to take the advantage of multiple cores pre-

sent on the processor chip. To develop an application that
exploits multicore, predominantly two approaches are fol-
lowed. The first approach is to develop an explicitly parallel

code that can be scheduled on multiple cores of a given proces-
sor and the other approach is using a compiler to extract fine
grained parallelism by identifying the sets of instructions that

can be executed in parallel. Currently, several new programing

* Corresponding author.

E-mail addresses: dck@pilani.bits-pilani.ac.in (D.C. Kiran), sguru@

pilan.bits-pilani.ac.in (S. Gurunarayanan), jpm@pilan.bits-pilani.ac.in

(J.P. Misra), munish.bhatia.cse@gmail.com (M. Bhatia).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences (2017) 29, 85–92

King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com

http://dx.doi.org/10.1016/j.jksuci.2015.04.001
1319-1578 � 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dck@pilani.bits-pilani.ac.in
mailto:sguru@pilan.bits-pilani.ac.in
mailto:sguru@pilan.bits-pilani.ac.in
mailto:jpm@pilan.bits-pilani.ac.in
mailto:munish.bhatia.cse@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2015.04.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

models and different ways to exploit threads and data-level
parallelism are being explored which help in coarse grained
parallelism. There is very little effort from the research com-

munity toward the exploitation of compiler driven fine grained
parallelism in a sequential program.

The multicore processors can be made to exploit fine

grained parallelism of a given code by exposing the low level
architectural details to the compiler and operating systems
(Zhong, 2008). The architecture can be designed to support

the minimal set of operations required for executing an instruc-
tion and the task of extracting the fine grained parallelism can
be left for compilers and run time environment to achieve. The
runtime environment can manage resource allocation, extract-

ing parallel constructs for different cores, and scheduling based
on information generated by the compiler. Some of the archi-
tectures supporting these features are Power4 (Tendler et al.,

2002), Cyclops (Cascaval et al., 2002) and RAW (Waingold
et al., 1997) architecture. The multicore environment has mul-
tiple interconnected tiles and on each tile there can be one

RISC like processor or core. Each core has instruction mem-
ory, data memory, PC, functional units, register files, and
source clock. FIFO (queue) is used for communication. Here

the register files are distributed, eliminating the small register
name space problem. The challenge in achieving a perfor-
mance gain from fine-grain parallelism is identification of the
fine grained thread from a given single threaded application

and scheduling these threads on different cores of the multi-
core processor. There has been considerable focus on improv-
ing performance through automated fine-grain parallelization,

where a sequential program is split into parallel fine grained
threads and are scheduled onto multiple cores (Kiran et al.,
2011a,b; Kiran et al., 2012). In general, the multicore proces-

sors have a private register file, L1 data and Instruction cache
and shared L2 cache. The limited size of L1 data cache, war-
rants the optimal amount of data to be brought into the cache.

The poor choices in the placement of data can lead to the
increased memory stalls and low resource utilization. The fine
grained threads that are scheduled onto different cores need to
be allocated registers from a respective register file of the core

on which they are scheduled.
Various register allocation approaches are proposed in the

past (Chaitin, 1982; Norris and Pollock, 1994; Gupta et al.,

1994; Callahan and Koblenz, 1991; Lueh et al., 2000; Chow
and Hennessy, 1984; Briggs et al., 1989; Poletto and Sarkar,
1999; Mossenbock and Pfeiffer, 2002; Fu and Wilk, 2002;

Burkard et al., 1984; Todd et al., 1996). Most of the register
allocation algorithms assume that the CPU has regular register
file and these algorithms fail to adapt themselves for irregular
architectures. Several solutions have been proposed for irregu-

lar architectures, but without considering the specific imple-
mentation details, it is difficult to achieve optimal register
allocation (Koes and Goldstein, 2005; Kong and Wilken,

1998; Scholz and Eckstein, 2002). In the case of a multicore
processor, each core of the processor has an individual register
file and optimal register allocation is of utmost importance.

Multicore architecture is one area which expects new thinking
for register allocation. The proposed work explores the various
likely steps needed for register allocation for multicore

architecture.
This paper proposes two register allocation heuristics

referred as heuristic 3 and heuristic 4 for fine grained threads
which can be scheduled on multicore processor. Results are

compared with heuristic 1 and heuristic 2 which are existing
register allocation approaches. The proposed register alloca-
tion heuristics along with considering multiple private register

files on each core, constructs the interference graph incremen-
tally by checking the register pressure as opposed to existing
register allocation approaches which construct the global inter-

ference graph and then perform simplification to reduce regis-
ter pressure.

The rest of the paper is organized as follows. Section 2

describes background of the proposed work. It also discusses
some of the recent works pertaining to sub-block creation or
fine grained thread extraction and scheduling techniques. Sec-
tion 3 gives a detailed description of the proposed register allo-

cation technique for multicore environment. Through an
illustrative example the steps involved in the proposed algo-
rithm is presented in Section 3.4. Analysis and discussion of

the results are presented in Section 4, Section 5 presents the
conclusion and direction for future work.

2. Background

This section introduces the background of the proposed work.
The proposed work performed in conjunction with following

work.

� Parallel region formation or extracting fine grain threads

(Kiran et al., 2011a).
� Scheduling parallel regions or fine grain threads on to mul-
tiple cores (Kiran et al., 2011b, 2012).

The work flow of the compiler is shown in Fig. 1. Two addi-
tional passes are introduced into the normal flow of the com-
piler. The Fine grained extractor module and the scheduler

module. The Fine grained extractor module analyzes the basic
blocks of CFG and divides each of them into multiple sub-
blocks. The scheduler module generates the multiple schedules

which can be concurrently executed on different cores of the
processor. The register allocator module carries out the regis-
ter assignment operation using Chaitin’s register allocation

approach (Chaitin, 1982).

2.1. Fine grain thread

A fine grain thread is a sub-block formed by analyzing the

instruction dependency in the basic block of the control flow
graph (CFG) of a program Kiran et al., 2011a. The fine grain
thread extractor module in Fig. 1 creates sub-blocks. The sub-

blocks created are disjoint and can run in parallel. In Fig. 3,
the CFG has 4 basic blocks (Bp). The disjoint set operations

DAG2CFG
Convertor

.asm Register
Allocator

Assembly Code
Generator

Front End DAG CFG

Schedule

Source
Code

Fine Grain
Thread

Extractor

Scheduler

sub-blocks

Figure 1 Flow of compiler.

86 D.C. Kiran et al.

Download English Version:

https://daneshyari.com/en/article/4960338

Download Persian Version:

https://daneshyari.com/article/4960338

Daneshyari.com

https://daneshyari.com/en/article/4960338
https://daneshyari.com/article/4960338
https://daneshyari.com

