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a b s t r a c t 

This paper proposes several mixed integer programming models which incorporate optimal sequence 

properties into the models, to solve single machine family scheduling problems. The objectives are to- 

tal weighted completion time and maximum lateness, respectively. Experiment results indicate that there 

are remarkable improvements in computational efficiency when optimal sequence properties are included 

in the models. For the total weighted completion time problems, the best model solves all of the prob- 

lems up to 30-jobs within 5 s, all 50-job problems within 4 min and about 1/3 of the 75-job to 100-job 

problems within 1 h. For maximum lateness problems, the best model solves almost all the problems up 

to 30-jobs within 11 min and around half of the 50-job to 100-job problems within 1 h. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Batching jobs that share the same setup on a machine to 

increase productivity is a common practice in manufacturing. Such 

batching of jobs is often classified as a family in scheduling. When 

processing two jobs belonging to different families consecutively, 

a setup is required between them. The batching operation often 

leads to job lateness and results in poor delivery performance. 

How to trade-off productivity and delivery performance is a tricky 

scheduling problem. This problem is called batch/family/group 

scheduling with setups in the literature. For past research on 

family scheduling see Refs. [12,16,23] . 

The solution approaches to solve family scheduling problems 

include mathematical programming [1,3,8,13] , branch and bound 

[7,18,19] , dynamic programming [6,9,11,17] and heuristic/meta 

heuristics [4,5,14,21,24,25] . The last approach, heuristic/meta 

heuristics, is often designed to find good solutions for large scale 

problems. Except for mathematical programming, time consum- 

ing and complicated coding is required to find optimal/good 

sequences. On the other hand, commercial solvers such as LINGO 

and CPLEX are available to solve mathematical models. Thus, the 

start-up task for mathematical programming is much less than 

those of the other three solution approaches. Often the mathemat- 

ical programming approach is applied to find an optimal schedule 

with limited CPU time, say 1 h, and is often used to solve small 
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size problems. Thus, the mathematical programming approach is 

applicable for small-size enterprise scheduling problems or as a 

basis for rolling-horizon based scheduling techniques. 

Webster and Baker [23] give an overview of optimal properties 

on family scheduling on a single machine. Very often these op- 

timal properties are included in the branch and bound, dynamic 

programming and heuristic solution approaches to achieve better 

computational efficiency. In this study, we include some optimal 

properties of the family scheduling problem into mathematical 

programming models and investigate the effects of this inclusion 

on computational efficiency. In solving scheduling problems with 

mathematical programming, there are several well-known mixed 

integer programming (MIP) formulations proposed in the litera- 

ture, which include: (1) the disjunctive formulation developed by 

Manne [10] which contains precedence variables that define the 

precedence order of any two jobs and disjunctive constraints that 

relate the completion times between any two jobs (2) the time 

indexed formulation proposed by Sousa and Wolsey [20] which 

defines time variables that relate jobs to the corresponding pro- 

cessing starting times in a finite discrete time horizon, (3) the 

linear ordering formulation developed by Potts [15] which adds 

triangle inequalities among the precedence variables of any three 

jobs and (4) the sequence position formulation developed by 

Wagner [22] which contains sequence position variables that 

relate jobs to corresponding positions in a sequence. For the single 

machine scheduling problem with release dates and sequence de- 

pendent setup and the objectives of total weighted tardiness and 

total weighted completion time, respectively, Nogueira and Car- 

valho (2014) compares the performance of six MIP formulations, 
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which include the four formulations above and two improved 

formulations and finds that the disjunctive formulation solves a 

greater number of problems. 

In this study, we adopt the mathematical programming ap- 

proach to find the optimal sequence of a single machine family 

scheduling problem with family sequence independent setup time 

and the objectives of total weighted completion time (TWC) and 

maximum lateness ( L max ), respectively. Three MIP formulations 

which include the optimal sequence properties are proposed. The 

performance of the proposed three MIP formulations is compared 

with two MIP models that do without the optimal sequence prop- 

erties by computational experiments under different operating 

scenarios. The rest of this paper is organized as follows. Section 

2 gives problem statements and presents MIP formulations. 

Section 3 gives the computational results and the paper concludes 

in Section 4 . 

2. Problem statements and MIP formulations 

Consider the problem of scheduling N jobs belonging to F 

families on a single machine. A family sequence independent 

setup is required when a machine switches from idle to busy and 

from processing jobs in one family to jobs in another family. The 

objectives are to minimize total weighted completion time (TWC) 

and maximum lateness, respectively. Before proposing the MIP 

models, we give two optimal sequence properties of the family 

scheduling problems first. 

Bruno and Sethi’s optimal property: For the TWC problems, 

t here is an optimal sequence in which jobs in the same family are 

ordered by SWPT (shortest weighted processing time first) [2] . 

Monma and Potts’s optimal property: For the L max problems, 

there is an optimal sequence in which jobs in the same family are 

ordered by EDD (earliest due date first) [11] . 

We include these two optimal properties in the constraints of 

MIP formulations and investigate the effects of these inclusions. 

Five MIP formulations are proposed to solve this problem, they are 

(1) family linear ordering formulation, FLO, (2) FLO with jobs in 

the same family sequenced in SWPT for TWC problems, FLO swpt , 

and in EDD for L max problems, FLO edd , (3) ordered linear ordering 

formulation, OLO, where jobs in the same family are sequenced 

in SWPT for TWC problems and in EDD for L max problems, (4) 

disjunctive formulation, DJ and (5) DJ with jobs in same family 

sequenced in SWPT for TWC problems, DJ swpt , and in EDD for L max 

problems, DJ edd . The FLO and DJ formulations are proposed for the 

purpose of comparison. The notation and parameters used in the 

MIP formulations are as follows. 

Notation and parameters 

a ( i, j ) : job j of family i . 

F : set of all families. 

N : set of all jobs. 

s i : setup time of family i . 

s ( i, k ) : setup time from family i to family k , s ( i,k ) = s k , s ( i,k ) = 0 if 

i = k . 

p ( i, j ) : processing time of a ( i, j ) . 

w ( i, j ) : weight of a ( i, j ) . 

d ( i, j ) : due date of a ( i, j ) . 

f : total number of families. 

n i : total number of jobs in family i . 

n : total number of jobs. 

M : a big number. 

Decision variables 

δ( i, j ) ( k,l ) = 

{
1 if a ( i, j ) is scheduled before a ( k,l ) . 

0 otherwise . 

x i j ′ j = 

{
1 if a (i, j ′ ) is sched uled immed iately be f ore a (i, j) . 

0 otherwise . 

y (i, j) = 

{
1 if a setup occurs immediately before a (i, j) 

0 otherwise . 

z (i, j)(k,l) = 

⎧ ⎨ 

⎩ 

1 if a (i, j) is scheduled be f ore a (k,l) and a setup 

s i occurs immediately before a (i, j) . 

0 otherwise . 

C (i, j) : completion time of a (i, j) . 

2.1. FLO formulation 

The linear ordering formulation is to solve a single machine 

scheduling problem without setups. The problem studied here is 

a family scheduling problem with setups, and thus a family linear 

ordering formulation, FLO, is proposed. In the FLO formulation, 

jobs in each family are arbitrarily numbered. The constraints of 

FLO are: 

δ(i, j)(k,l) + δ(k,l) (i, j) 
= 1 ∀ ( i, j) , (k, l) ∈ N, ( i, j) � = (k, l) (A1) 

δ( i, j ) ( k,l ) + δ( k,l ) ( o,p ) 
+ δ( o,p ) ( i, j ) 

≤ 2 

∀ ( i, j ) , ( k, l ) , ( o, p ) ∈ N and ( i, j ) � = ( k, l ) � = ( o, p ) (A2) 

(
1 − x i j ′ j 

)
≤

( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

+ M 1 

(
1 − δ(i, j ′ )(i, j) 

) ∀ ( i, j) , 
(
i, j ′ 

)
∈ N, j < j ′ (A3) 

( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

≤ M 2 

(
1 − x i j ′ j 

) ∀ ( i, j) , 
(
i, j ′ 

)
∈ N, j < j ′ (A4) 

x i j ′ j ≤ δ(i, j ′ )(i, j) ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A5) 

y (i, j) = 1 −
n i ∑ 

j ′ =1 

x i j ′ j ∀ (i, j) ∈ N (A6) 

z (i, j)(k,l) ≥ δ(i, j)(k,l) + y (i, j) − 1 ∀ ( i, j) , (k, l) ∈ N (A7) 

C (i, j) = 

f ∑ 

k =1 

n k ∑ 

l=1 

(
p (k,l) δ(k,l)(i, j) + s k z (k,l)(i, j) 

)
+ p (i, j) + s i y (i, j) ∀ ( i, j ) ∈ N (A8) 

C (i, j) ≥ 0 ∀ ( i, j) ∈ N (A9) 

δ(i, j)(i, j) = 0 ∀ (i, j) ∈ N (A10) 
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