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a b s t r a c t

Given an edge-weighted graph = ( )G V E, with vertex set V and edge set E, we study in this paper the
following related balanced tree structure problems in G. The first problem, called Constrained Minimum
Spanning Tree Problem (CMST), asks for a rooted tree T in G that minimizes the total weight of T such that
the distance between the root and any vertex v in T is at most a given constant C times the shortest
distance between the two vertices in G. The Constrained Shortest Path Tree Problem (CSPT) requires a
rooted tree T in G that minimizes the maximum distance between the root and all vertices in V such that
the total weight of T is at most a given constant C times the minimum tree weight in G. The third
problem, called Minimum Maximum Stretch Spanning Tree (MMST), looks for a tree T in G that minimize
the maximum distance between all pairs of vertices in V. It is easy to conclude from the literatures that
the above problems are NP-hard. We present efficient genetic algorithms that return (as shown by our
experimental results) high quality solutions for these problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let = ( )G V E, be an edge-weighted connected graph with
vertex set V and edge set E. Let n and m denote the cardinalities of
V and E respectively (i.e., | | =V n and | | =E m). A spanning tree Tm in
G is a Minimum Spanning Tree (MST) if there is no other spanning
tree in G that attains a total weight less than that of Tm. Kruskal's
and Prim's algorithms are well known polynomial time algorithms
for computing a minimum spanning tree in weighted graphs. For
any vertex r in G, a spanning tree Ts rooted at r is a shortest path
tree if, for every vertex ∈v V , the distance between r and v in Ts
equals the shortest distance between the two vertices in G. Dijk-
stra's algorithm is one of the well known polynomial time algo-
rithms for computing shortest path tree in weighted graphs [44].

Tree structures are widely used in many applications like net-
work routing, communication networks and distributed systems.
In particular, the shortest path tree minimizes the delay from the
source to every destination through a routing tree, and the mini-
mum spanning tree minimizes the total routing cost along a tree.
See [10,21,26,31,45] and the references therein. Thus, balanced
tree structures are appropriate routing trees for communication

networks that aim to balance the above two objectives. Also, in the
case of concurrent requests through a routing tree, it is required to
simultaneously minimize the distances between all vertex pairs in
the constructed tree (see [14,25,36] and the references therein).

Note that, there exist weighted graphs in which the total
weight of a shortest path tree may be much more than that of a
minimum spanning tree, and vertices that are close to the desig-
nated root can be far away from the root in a minimum spanning
tree (see [29] for an illustrative example). A rooted tree in a given
graph balances a minimum spanning tree and a shortest path tree
if its total weight is at most a constant times the minimum
spanning tree weight, and the distance between the root and any
vertex in the tree is at most a constant times the shortest distance
between the two vertices in the graph. Formally, for any α β ≥, 1, a
rooted spanning tree T in G is called α β( ), -balanced spanning tree
if, (i) for every vertex v, the distance between the root and v in T is
at most α times the shortest distance between the two vertices in
G, and (ii) the total weight of T is at most β times the minimum
tree weight in G.

Given a constant ≥C 1, we first consider the following two
variants of the α β( ), -balanced spanning tree problem. The Con-
strained Minimum Spanning Tree Problem (CMST) asks for a tree T
in G that minimizes the total weight of T (i.e., minimizes β) such
that the distance between the root and any vertex v in T is at most
C times the shortest distance between the two vertices in G. A
formal definition for the CMST can be described as follow. For any
pair of vertices u and v in G, ( )d u v,T (respectively, ( )d u v,G ) denotes
the shortest distance between u and v in T (respectively, G). For a
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subgraph ′G of G, let ( ′)w G denote the total weight of ′G (i.e., the
total weights of all edges in ′G ).

Constrained Minimum Spanning Tree Problem (CMST):
Input: An edge-weighted graph = ( )G V E, , a root ∈r V , and a

constant ≥C 1.
Feasible solution: A spanning tree T in G such that

( ) ≤ · ( )d r v C d r v, ,T G for all ∈v G.
Goal: Find a feasible solution that minimizes ( ) ( )w T w T/ m .
Similarly, the Constrained Shortest Path Tree Problem (CSPT)

requires a tree T in G that minimizes the maximum distance be-
tween the root and all vertices in G (i.e., minimizes α) such that
the total weight of T is at most C times the minimum tree weight
in G. This problem can be defined formally as follows.

Constrained Shortest Path Tree Problem (CSPT):
Input: An edge-weighted graph = ( )G V E, , a root ∈r V , and a

constant ≥C 1.
Feasible solution: A spanning tree T in G such that

( ) ≤ · ( )w T C w Tm .
Goal: Find a feasible solution that minimizes ( )∈ d r vmax ,v V T .
A tree t-spanner problem is a well known balanced tree struc-

ture problem that looks for a tree T in G such that the distance
between every pair of vertices in T is at most t times the shortest
distance between the two vertices in G. In other words, for any

≥t 1, a spanning tree T of G is called tree t-spanner if, for any two
vertices u and v in G, it holds that ( ) ≤ · ( )d u v t d u v, ,T G . The value of
t, called the stretch factor of T, estimates the goodness of the
distance approximation of T. In this paper, we are concerned with
the Minimum Maximum Stretch Spanning Tree (MMST) problem,
the problem of finding a tree t-spanner with the smallest possible
stretch factor t [20,35]. A formal description for the MMST is given
as follows.

Minimum Maximum Stretch Spanning Tree Problem (MMST):
Input: An edge-weighted graph = ( )G V E, .
Feasible solution: A spanning tree T in G.
Goal: Find a feasible solution T that minimizes the stretch factor t.
It is well known that, for any α β ≥, 1, the problem of deciding

whether G contains an α β( ), -balanced spanning tree is NP-com-
plete [29]. Consequently, the CMST and CSPT problems are NP-
hard problems. Also, for any ≥t 1, the problem of deciding whe-
ther G contains a tree t-spanner is NP-complete [9], and hence the
MMST problem is NP-hard. In this paper, we present efficient ge-
netic algorithms for the above defined problems. Up to our
knowledge, these are the first evolutionary algorithms for these
problems. Our experimental results show that the proposed al-
gorithms return high quality solutions for the problems.

The rest of this paper is organized as follows. Section 2 reviews
some results on related problems. Section 3 presents the proposed
genetic algorithms. Section 4 evaluates our algorithms by applying
it to randomly generated instances of the two problems. Section 5
makes some concluding remarks.

2. Related work

In this section, we present results on related problems. Let
= ( )G V E, be a given edge-weighted graph. The eccentricity of a

vertex ∈v V is the greatest distance between v and any other
vertex in V. The radius of G is the minimum eccentricity of any
vertex. The diameter of G is maximum eccentricity of any vertex in
the graph.

Bharath-Kumar and Jaffe [30] studied the problem of finding a
rooted tree in G such that the total distances from the root to all
vertices is at most a constant times the minimum total distances
from the root to all vertices.

A tree in G is called shallow-light tree if its diameter is at most a
constant (greater than or equal 1) times the diameter of G and

with total weight at most a constant times the minimum spanning
tree weight. Awerbuch et al. [2] proved that each graph has a
shallow-light tree.

Cong et al. [12] proposed a model of timing-driven global
routing for cell-based design to improve the construction of a
shallow-light tree based on the idea of finding minimum spanning
tree with bounded radius. They designed an algorithm to find, for
any constant ϵ > 0, a spanning tree with radius ( + ϵ)·R1 (using an
analog of the classical Prim's minimum spanning tree structure),
where R is the minimum possible tree radius. That is, they found a
smooth trade-off between the radius and the cost of the tree.
Afterwards, they proposed a new method [13] to improve their
previous algorithm based on a provably good algorithm that si-
multaneously minimizes both the total weight and the longest
interconnection path length of the tree. More specifically, their
algorithm produced a tree with radius at most ( + ϵ)·R1 and of
total weight at most ( + ϵ)1 2/ times the minimum tree weight.

Given any α ≥ 1, Awerbuch et al. [3] proposed an algorithm that
approximates a minimum spanning tree and a shortest paths tree
in G. Namely, they modified the algorithm described in [2,12] to

compute an ( )α +
α −, 1 4

1
-balanced spanning tree in ( + )O m n nlog

time. Afterwards, Khullar et al. [29] improved the above result and
presented a constructive linear time algorithm that outputs an

( )α +
α −, 1 2

1
-balanced spanning tree in G. In other words, for any

γ > 0, the algorithm of Khullar et al. [29] outputs an

( )γ+ +
γ

1 2 , 1 2 -balanced spanning tree in linear time.

For unweighted graphs (i.e., all edges in G have unit edge
weights), Cai and Corneil [9] produced a linear time algorithm to
find a tree t-spanner in G for any given ≥t 2. Moreover, they
showed that, for any ≥t 4, the problem of finding a tree t-spanner
in G is NP-complete. Brandstädt et al. [7] substantially strength-
ened the hardness result in [9]. Namely, they showed that, for any

≥t 4, tree t-spanner problem is NP-complete even on chordal
graphs of diameter at most +t 1 (respectively, +t 2) if t is even
(respectively, odd). Afterwards, they proved that the tree t-spanner
problem is NP-complete even for chordal bipartite graphs for ≥t 5
[8].

In [22], Fekete and Kremer showed that it is NP-hard to de-
termine a minimum value for t for which a tree t-spanner exists
even for planar unweighted graphs. They designed a polynomial
time algorithm that decides if the planar unweighted graphs with
bounded face length contains a tree t-spanner for any fixed t.
Moreover, they proved that for t¼3, it can be decided whether the
unweighted planar graph has a tree t-spanner in polynomial time.
The problem was left open whether a tree t-spanner is polynomial
time solvable in case of ≥t 4. Later, this problem is solved by
Dragan et al. [15]. For any fixed t, they showed that it is possible in
polynomial time not only to decide if a planar graph G has a tree t-
spanner, but also to decide if G has a t-spanner of bounded tree-
width. In particular, for every fixed values of t and k, they showed
that the problem, for a given planar graph G to decide if G has a t-
spanner of treewidth at most k, is not only polynomial time sol-
vable, but is fixed parameter tractable (with k and t being the
parameters).

Recently, Dragan and Köhler [16] examined the tree t-spanner
on chordal graphs, generalized chordal graphs, and general graphs.
For unweighted graphs G, they proposed a new algorithm that
constructs a tree ( ⌈ ⌉⌊ ⌋t n2 /2 log2 )-spanner in O(mn log2n) time or a
tree ( ⌊ ⌋t n6 log2 )-spanner in O( m nlog ) time for the arbitrary
graphs. After that, they improved these results and constructed a
tree ( ⌊ ⌋n2 log2 )-spanner in O(m nlog ) time for chordal graphs. Also,
they constructed a tree ( ρ⌊ ⌋n2 log2 )-spanner in O(m log2n) time or
a tree ( ρ⌊ ⌋n12 log2 )-spanner in O( m nlog ) time for graphs that
confess a Robertson–Seymour's tree-decomposition [16]. In
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