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a  b  s  t  r  a  c  t

Evaluating  and  comparing  multi-objective  optimizers  is an  important  issue.  But,  when  doing  a  com-
parison,  it has  to be noted  that  the results  can  be  influenced  highly  by the  selected  Quality  Indicator.
Therefore,  the  impact  of  individual  Quality  Indicators  on the  ranking  of Multi-objective  Optimizers  in
the  proposed  method  must  be analyzed  beforehand.  In this  paper  the  comparison  of  several  different
Quality  Indicators  with  a method  called  Chess  Rating  System  for  Evolutionary  Algorithms  (CRS4EAs)  was
conducted  in  order  to  get a better  insight  on  their  characteristics  and  how  they  affect  the  ranking  of
Multi-objective  Evolutionary  Algorithms  (MOEAs).  Although  it is  expected  that  Quality  Indicators  with
the  same  optimization  goals  would  yield  a similar  ranking  of  MOEAs,  it has  been  shown  that  results  can
be  contradictory  and  significantly  different.  Consequently,  revealing  that claims  about  the  superiority  of
one MOEA  over  another  can be  misleading.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Multi-objective optimization is an area that deals with opti-
mization of multi-objective optimization problems (MOPs). A
multi-objective optimization problem can be defined as:

Minimize F(x) = (f1(x), . . .,  fm(x))

Subject to

gi (x) ≥ 0 i = 1, 2, ..., p

hi (x) = 0 i = 1, 2, ..., q,

(1)

where x = (x1, x2, . . .,  xn) ∈ X is an n-dimensional decision vector
bounded in the decision (variable) space X, and the objective func-
tion vector F : X → R

m consists of m (m ≥ 2) real-valued objective
functions fi and R

m is the objective space. p is the number of inequal-
ity constraints, while q is the number of equality constraints.

Let x, y ⊂ X denote two solutions. x is said to dominate y
(f(x) ≺ f(y)) if for each objective i is fi (x) ≤ fi (y) and at least one
objective j is fj (x) < fj (y). A solution x* is called a Pareto optimal
solution if there exists no solution x ⊂ X such that f(x) ≺ f(x*). The
set of these optimal solutions is termed as the Pareto front (PF) in
the objective space R

m and the Pareto set (PS) in the decision space
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X. The set of optimal solutions in the PF represent the best trade-
offs between different objectives, since a single solution cannot
optimize all objectives simultaneously. Thus, the goal of Multi-
Objective Optimization (MOO) is to obtain the Pareto optimal front.
Since many Multi-Objective Optimization problems are difficult to
solve, the outcome of the optimization is usually an approximation
of the Pareto front. These approximations need to be evaluated in
order to compare them. Evaluating the quality of these approxima-
tions is itself an MOP. Zitzler et al. [1] suggested three optimization
goals (aspects) that need to be measured:

• The distance of the resulting approximation set to the Pareto
optimal front should be minimized (convergence).

• A good (in most cases uniform) distribution of the solutions found
is desirable (uniformity).

• The extent of the obtained approximation front should be maxi-
mized (spread).

Comparing the performance of MOEAs remains an open prob-
lem. The most popular measures are Quality Indicators (QI); the
term “performance metric” is also used to quantify the differences
between approximation sets.

Many different QIs for measuring the quality of approximation
sets have been proposed in the literature [1–10]. Each QI has been
designed with a standpoint that takes one or more previously men-
tioned optimization goals into consideration. This means that no
single indicator alone can reliably measure all optimization goals.
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It should be noted that several surveys and experiments have been
conducted to analyze individual QIs [4,8,11,12,13]. The results have
shown inconsistencies in the assessment of various approximation
sets. This was also confirmed by our results, which revealed fur-
ther surprising dimensions of the impact of QIs on the rankings of
MOEAs and that the rankings can be contradictory even between
QIs with the same optimization goals. It was argued in [11] and
[12], that, without established comparison criteria, claims based
on heuristically chosen QIs do little to determine a given MOEA’s
actual efficiency and effectiveness. In addition, the conclusions are
useless for answering the question of which algorithms are supe-
rior to others, so can it be argued that one algorithm is better than
another even though the outcome depends on the selected QI?

The aim of this paper is to acquire new knowledge about QIs and
to obtain a better insight into the impact of the selected QI in the
comparison of MOEAs using a Chess Rating System for Evolution-
ary Algorithms (CRS4EAs) [14]. In CRS4EAs each player’s (MOEA)
performance is represented by rating obtained with the Glicko-2
rating system. Based on the differences in ratings of MOEAs, signif-
icant differences can be detected. Using different Quality Indicators
in the comparison we can observe their impact on MOEA’s rating
and consequently on significant differences amongst MOEAs. The
main contributions of this paper are: A detailed analysis of QIs using
a novel method called CRS4EAs, and finding coherent and robust QIs
to increase the reliability of the assessment of Pareto approxima-
tion sets and, thereby, also increase the legitimacy of claims about
MOEA performance.

This paper is an extended version of the conference paper pub-
lished in [15], where a CRS4EAs was first introduced for comparing
MOEAs. We  extended our previous work with a more detailed
analysis of QIs and added a second scenario where we repeat the
experiment on a real world problem to increase the practical value
of the research. This will give us an even better insight on the impact
of QIs on the rating of MOEAs.

The remainder of the paper is organized as follows. Section 2
introduces some basic concepts of Quality Indicators. The CRS4EAs
is presented in Section 3. Section 4 presents, the execution of the
experiment and results. Finally, the paper concludes in Section 5.

2. Quality Indicators

Solutions of MOPs can be compared using dominance rela-
tions [4]. However, there are numerous limitations in using this
approach. For example, the extent to which one approximation is
better than another cannot be expressed nor can it be expressed
in which aspects this is so. Furthermore, when using dominance
relations, there are cases in which approximation sets are incompa-
rable. This applies particularly for problems with larger number of
objectives caused by the phenomena known as the curse of dimen-
sionality [16]. QIs have been designed in order to overcome these
limitations. These QIs measure approximations of Pareto optimal
fronts quantitatively. Therefore, QIs, are in essence, functions that
assign each approximation set a real number that reflects different
aspects of quality or quality differences. Zitzler et al. [4] defined
a Quality Indicator I as an m-ary function I : �m → R  that assigns
each vector (A1, A2, . . .,  Am) of m approximation sets a real value
I (A1, . . .,  Am) where � is the set of all approximation sets. Once
the approximation sets are evaluated by QIs, different conclusions
can be drawn about their relations. For different aspects of quality,
different QIs need to be used.

Quality Indicators have been categorized into different groups
from different points of view to understand their nature better
[4,11,2]. They are categorized mainly by the aspects of quality that
they assess. These aspects include the closeness to the Pareto-
optimal front, the number of elements of the Pareto-optimal front

found, and the maximum spread of solutions. Quality Indicators are
also classified based on the number of approximation sets they take
as an argument. Unary QIs accept one approximation and binary
accept two. However, in principle, QIs that accept an arbitrary num-
ber of arguments are also possible. When evaluating with unary
QIs the resulting real values need to be compared in order to see
which result set is better. Binary QIs, in contrast, compare two  result
sets to determine which one is better. Therefore, when compar-
ing t algorithms using binary QIs, t(t -1) distinct indicator values
are obtained. Some unary QIs require a reference set to perform
the evaluation, which must be taken into consideration since real-
world problems have unknown Pareto-optimal fronts. When the
reference set is available, any QI can be converted from binary to
unary. There are also other categories that are not used as often,
such as computational complexity, the sensitivity to scaling, the
number of objectives, etc. It is also desirable that a QI  be compat-
ible and complete with respect to dominance relations. A Quality
Indicator I is compatible with the dominance relation if and only if
∀ A, B ∈ �,  I(A) is better than I(B) → A dominates B. A Quality Indi-
cator I is complete with the dominance relation if and only if ∀ A,
B ∈ �,  A dominates B → I(A) is better than I(B) [4].

Quality Indicators need interpretation, and different compari-
son methods can be used. This is best illustrated by Zitzler (Fig. 1)
[4] where concepts of comparison methods are presented using
either only unary or only binary QIs. Case (a) uses a single unary
QI, (b) a single binary QI, and (c) a combination of two unary QIs. In
cases (a) and (b), the indicator I evaluates the approximation sets
A and B. The result is passed to the interpretation function E which
returns true if the first approximation is better than the second.
In case (c), two unary indicators are applied to A and B then the
resulting two  indicator values are combined in a vector, I(A) for A
and vector I(B) for B. The vectors are passed to the interpretation
function E that decides the outcome. The interpretation function
returns true if the first approximation (A) is better than the second
(B), otherwise it returns false.

In this paper, eleven QIs (Coverage of two sets (CS), additive
� Indicator (I�+), Generational Distance (GD), Hypervolume (HV),
Inverted Generational Distance (IGD), improved IGD (IGD+), Max-
imum Pareto Front Error (MPFE), MaximumSpread (MS), the R2
indicator (R2), Spacing (S) and generalized spread (�)) are used,
based on their prevalence in literature and different properties
[17–19]. Selected Indicators are listed with their characteristics in
Table 1. CS is one of the few commonly used binary QI in literature.
Its advantage is that it does not require a reference set. As we can
see, this is a shortcoming for most of unary QIs. As already men-
tioned, they are categorized by aspects of quality that they assess.
Some of them even fall in all three categories. In a fair compari-
son we want to evaluate all aspects of quality and we  therefore ask
ourselves why not use just these QIs? As we have already stated,
evaluating the quality of approximation sets is an MOP. This means
that a single QI can not reliably assess all aspects at once. This was
also demonstrated in our experiments.

When comparing algorithms, usually a handful of QIs are
selected and then the experiment is performed and evaluated with
selected statistical methodologies. The CRS4EAs was used in our
case. The outcome of a comparison in CRS4EAs was determined by
methods a) and b) (Fig. 1), depending whether the QI was  unary or
binary.

3. Chess Rating System for Evolutionary Algorithms
(CRS4EAs)

In order to analyze QIs we  observed their impact on the rating
of MOEAs using the method called CRS4EAs [14]. With CRS4EAs
we can quantify the performance differences between MOEAs and
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