
Astronomy and Computing 20 (2017) 155–159

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Faster catalog matching on Graphics Processing Units✩

M.A. Lee a,*, T. Budavári b
a Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
b Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA

a r t i c l e i n f o

Article history:
Received 27 February 2017
Accepted 2 August 2017
Available online 9 August 2017

Keywords:
Methods
Statistical
Astrometry
Catalogs
Surveys

a b s t r a c t

One of the most fundamental problems in observational astronomy is the cross-identification of sources.
Observations are made at different times in different wavelengths with separate instruments, resulting
in a large set of independent observations. The scientific outcome is often limited by our ability to quickly
perform associations across catalogs. The matching, however, is difficult scientifically, statistically as
well as computationally. The former two require detailed physical modeling and advanced probabilistic
concepts; the latter is due to the large volumes of data and the problem’s combinatorial nature. In order to
tackle the computational challenge and to prepare for future surveyswedeveloped a new implementation
on Graphics Processing Units. Our solution scales across multiple devices and can process hundreds of
trillions of crossmatch candidates per second in a single machine.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modern telescopes produce vast volumes of data every night.
With the current and upcoming advances in technology, survey
data-sets are growing at a tremendous pace. To maximize the
scientific value of each experiments we often need to combine
their observations with other surveys. The identification of objects
across multiple catalogs and surveys can lead to new discoveries
and breakthroughs but the speed of matching is a limiting fac-
tor when combining the large outputs of many experiments. A
number of studies have focused on the statistical aspect of this
challenge (Budavári and Szalay, 2008; Heinis et al., 2009; Kerekes
et al., 2010; Budavári and Loredo, 2015) but they all rely on fast
2-way matching engines to find candidate associations first.

The current solutions including the SkyQuery (Dobos et al.,
2012; Budavári et al., 2013) and the CDS X-Match Service (Boch
et al., 2016) use hierarchical indexes and space-filling curves to
accelerate the process (Kunszt et al., 2001; Górski et al., 2005).
While their performance is great they are far from the speed of
interactive data exploration, the ability to do on-the-fly catalog
federation would be a game-changer. To illustrate the big-data
aspect of the project, let us consider a relatively small scenario of
matching GALEX (50 million objects) with SDSS DR7 (150 million
objects), a naïve implementation would require 7.5 quadrillion
(1015) comparisons.

✩ This code is registered at the ASCL with the code entry ascl:1303.021.

* Corresponding author.
E-mail address:matthiaslee@jhu.edu (M.A. Lee).

In this paperwe describe a novel approach that takes advantage
of the extreme parallelism available on modern GPUs as well as an
efficientmethod for reducing the total number of comparisons. The
tool we present can crossmatch at rates of over a trillion candidate
pairs per millisecond. We will limit our investigation to matching
only two catalogs but without assuming that they are sorted or
indexed in any way ahead of time. This choice is motivated by the
fact that n-way associations can be built up by 2-way matching
using the best guess direction of the partial matches (Budavári and
Szalay, 2008).

2. Divide and conquer

The combinatorial scaling of a naïve matching approach can be
remedied by quickly eliminating pairs at large separations. This is
often achieved by partitioning the sky and considering only nearby
areas instead of the entire sphere. These heuristic algorithms often
rely on hierarchical division schemes such as Igloo (Crittenden,
2000), Hierarchical Triangular Mesh (HTM; Kunszt et al., 2001),
HEALPix (Górski et al., 2005) or SDSSPix (Scranton et al.).

2.1. Building on the zones algorithm

Our approach follows the division scheme of the Zones Algo-
rithm of Gray et al. (2007), which employs amuch simpler scheme.
It breaks up the sky into constant declination rings called the zones;
see Fig. 1. All zones have the same height, h, measured in angle.
For details on choosing a good value for h, see Section 3. A zone

http://dx.doi.org/10.1016/j.ascom.2017.08.001
2213-1337/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2017.08.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2017.08.001&domain=pdf
http://www.ascl.net/1303.021
mailto:matthiaslee@jhu.edu
http://dx.doi.org/10.1016/j.ascom.2017.08.001


156 M.A. Lee, T. Budavári / Astronomy and Computing 20 (2017) 155–159

Fig. 1. The Zones Algorithm: the coordinate plane is subdivided along one axis into
small strips of height h called zones. To find an object within a search radius, θ , all
zones are searched which overlap with search radius.

identifier is assigned to each source i based on its declination δi ∈

[−90◦, 90◦
] as given by

Zi =

⌊
δi + 90◦

h

⌋
, (1)

where ⌊ ⌋ indicates the floor function rounding down to the
closest integer.

Sources with the same values are in the same zones, which
creates easy and computationally cheap division of sources across
catalogs. The simplicity of this equation enables the immediate
implementation in any language unlike the more complicated
schemes listed above. This also fits well with the indexing facilities
of relational database management systems (RDBMS). For exam-
ple, the SkyQuery solution relies on zones for the largest matching
problems, as an optimal query plan can essentially stream through
the data on the hard drive with high efficiency and little memory
overhead. The key for crossmatching is to use the same zone layout
across all catalogs and eliminate all zone pairs that are farther
than a specified search radius. The resulting set of zone pairs
effectively mitigates any overlap needed to account for positional
errors. Within the zones it can be beneficial to further sort by the
right-ascension of the objects to quickly eliminate candidates that
are too far apart even before calculating the separation between
sources.

2.2. Layers of parallelism

Modern GPUs can run thousands of threads in parallel. In ad-
dition they also have superior memory bandwidth as compared to
CPUs. The capacity of RAM, however, is somewhat more limited
than that of today’s servers.With these parameters inmind,we de-
sign our architecture to takemaximumadvantage ofmultipleGPUs
in a single box.Wewill further assume that one of the catalogs, the
smaller, can fit in the computer’s memory, which will increase the
speed of the execution. This is not, however, a significant constraint
considering that 1 billion sources can be stored in 24GB ofmemory
with 8-byte numbers for object identifier and the two celestial
coordinates.

We slice the input catalogs into suitable segments that fit on the
GPUs and build a job scheduler to process pairs of these segments
from two catalogs. For the purposes of these next sections, let
us consider two unsorted catalogs, Catalog_A and Catalog_B,
each catalog consisting of objects identified by their ObjId (64bit
integer), RA (double) and Dec (double). Our method breaks down
into two main levels of parallelism. At the high level we distribute
the problem across GPUs and at the lower level we parallelize
across the many-core architecture within each GPU.

Input : Catalogs A and B, each containing objects identified by
(id, ra, dec) and (id’, ra’, dec’), respectively

gpu-foreach Segment of A do
Load Segment from disk;
Copy to GPU;
Sort by Zones and RA;
Identify Zone boundaries;
Copy back from GPU;

end
while Segments in B remain do

gpu-foreach Segment of B per GPU do
Load Segment from disk;
Copy to GPU;
Sort by Zones and RA;
Identify Zone boundaries;
Copy back from GPU;

end
gpu-foreach Segment–Segment pair do

Compute distance metric for every object within each
Zone–Zone pairing;
Accumulate comparison results;

end
end
Output: List of Object–Object pairings (id, id’), where (ra, dec)

and (ra’, dec’) are considered a match
Algorithm 1: High-level Crossmatch Processing Steps

2.2.1. Preparing the segments
At runtimewe begin the loading process of each catalog by sub-

dividing each into multiple segments of size n. The size is chosen
such that two segments, plus the overhead needed for processing,
can fit into GPU memory. While GPU memory itself is very fast,
transfers to and from are comparatively slow and hence should be
kept to a minimum. The division of the catalogs into segments is
purely a construct allowing us tomanage the datamore effectively
in order to fit the data onto the GPU and minimize GPU-memory
transfer overhead.

We begin by loading the smaller of the two input catalogs,
into CPU memory, segmenting it as we go. After each segment is
read from disk, it is loaded onto a GPU and sorted by the zone
identifiers Z and right-ascension using the C/C++ CUDA Thrust
library (Bell and Hoberock, 2011). This is done via a custom
comparator implemented as a functor which on-the-fly and in
parallel calculates the Z values. Arithmetics on the GPU are very
fast and repeated calculations of the zone identifier do not slow
down the process as we save on memory transfer, which is the
typical bottleneck. Sorting by zone identifiers is only part of the
battle, we also need to identify the zone boundaries, enabling us
to easily separate out zones at execution time. This has also been
implemented in parallel using the thurst :: lower_bound() and
thrust :: upper_bound() search functions, which are based on
Thrust’s vectorized binary search.

We then loop over the larger catalog, reading one segment per
available GPU. These segments are also loaded onto the GPUs and
sorted by zones. At this point the preparation has taken place and
the system is ready to loop through the segments of the catalog
loaded in CPU memory.

2.2.2. Jobs and workers
A dynamic execution environment is implemented where a

pool ofworker threads, one thread perGPU,wait for jobs consisting
of two segments, one from each input catalog. A job manager keeps



Download English Version:

https://daneshyari.com/en/article/4963655

Download Persian Version:

https://daneshyari.com/article/4963655

Daneshyari.com

https://daneshyari.com/en/article/4963655
https://daneshyari.com/article/4963655
https://daneshyari.com

