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a b s t r a c t

We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data
using the latest advances in deep learning. We employ a special type of Convolutional Neural Network,
the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data
acquired from a radio telescope. We train and assess the performance of this network using the HIDE
& SEEK radio data simulation and processing packages, as well as early Science Verification data acquired
with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation
is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK’s SumThreshold
implementation. We publish our U-Net software package on GitHub under GPLv3 license.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The radio band is becoming one of the most promising wave-
length windows for cosmology. In particular, observations of
the 21 cm neutral hydrogen line allow us to probe the high-
redshift Universe, which is not easily accessible with other wave-
lengths (Pritchard and Loeb, 2012). In addition, radio band data
provides important information for foreground studies of cosmic
microwave background, and also Galactic astronomy (Chang et al.,
2017). Ongoing and future experiments such as LOFAR (Haarlem
et al., 2013), GMRT (Paciga et al., 2013), PAPER (Ali et al., 2015),
CHIME (Bandura et al., 2014), BINGO (Battye et al., 2013; Battye
et al., 2012), HERA (Pober et al., 2014), Tianlai (Chen, 2012), and
the SKA (Mellema et al., 2015) aim to carry out wide-field surveys
in the radio band that covers large portions of the sky.

One of the main challenges in all these surveys is the radio
frequency interference (RFI) contamination to the data (Offringa
et al., 2010a). RFI can originate from a wide variety of human
produced sources such as satellites (GPS, geostationary, TV, etc.),
cell phones, and air traffic communication. Different sources of RFI
display different frequency and time-dependencies, causing the
overall RFI signal to be complex and difficult to model Fridman
and Baan (2001). If the RFI signal is strong and mixed with the
astronomical signal of interest, the data cannot be used and will
need to be masked.

✩ This code is registered at the ASCL with the code entry ascl:1611.002.
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To minimize the RFI contamination to data, radio telescopes
are normally built in remote locations that are protected against
major human-made emission sources. Some level of hardware
improvement such as ground-shielding and band-pass filters can
also reduce the input of RFI. However, in almost all situations, RFI
masking in the analysis software will still be needed.

The goal of any RFI masking algorithm is to minimize the
amount of data lost while ensuring low RFI contamination. This
procedure typically relies on the common assumption that the
morphological characteristics of RFI in the 2D plane of time and
frequency (the raw data format of standard spectrometers) are
different from that of astronomical signals. Astronomical signals
are usually broad-band and vary smoothly over long time-scales,
while RFI appears as high-intensity pixels localized in the time–
frequency plane or is sometimes also periodic in time. Existing
RFI mitigation algorithms typically fall into three categories. The
first category attempts to identify the characteristics of RFI through
linear methods such as Singular Vector Decomposition (SVD)
(Offringa et al., 2010a) or Principle Component Analysis (PCA)
(Zhao et al., 2013). These methods work well if the RFI pattern
exhibits a repeated pattern over time and frequency, but cannot
handle with more stochastic signals such as the ones caused by
irregular satellites. The second category uses threshold-based al-
gorithms such as cumsum (Baan et al., 2004) and SumThresh-
old (Offringa et al., 2010a),where the RFI is defined as pixels above
some threshold in the smoothed 2D time–frequency plane. Despite
their simplicity, these methods are fairly reliable and can be quite
effective. In particular, SumThreshold is the most widely used
algorithm in existing radio data processing pipelines (Offringa et
al., 2010a; Offringa et al., 2010b; Peck and Fenech, 2013; Akeret et
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al., 2017). The third category uses traditional supervised machine-
learning techniques such as K-nearest neighbor and Gaussianmix-
ture models to cluster RFI signals (Wolfaardt, 2016). For these
methods to achieve a sufficient classification accuracy, a careful
feature selection process has to be performed prior to the appli-
cation. While these three classes of methods have encountered a
significant success in astronomy, somewhat more advanced tech-
niques in machine learning have not been explored.

One approach that has shown promising results in the area of
machine learning are deep neural networks. In the recent years,
they outperformed state-of-the-art techniques in various classifi-
cation tasks such as biomedical image segmentation (Ronneberger
et al., 2015) or natural language processing (Collobert et al., 2011).
Although the concept of artificial neural network has been around
formany years, their current preeminence canbemostly attributed
to recent advances in customized hardware (especially GPUs) as
well as the development of open source deep learning software
packages.1

A particular successful type of network is the convolutional
neural network (CNN) (e.g. Krizhevsky et al., 2012; Collobert and
Weston, 2008). Typically, CNNs have been used to detect objects
in images (without having any exact prior knowledge of where the
object appears in the image). These networks have also recently
been extended to the problem of image segmentation, for which
a class label is assigned to each pixel in an input image. One
example of this segmentation network is the U-Net Ronneberger
et al. (2015). In this paper we apply this type of CNN to identify
and mitigate RFI in time-ordered-data (TOD) of a single-dish radio
telescope. To the best of our knowledge, this is the first application
of deep learning techniques to this class of problems.

This paper is organized as follows. In Section 2 we describe the
basic architecture and design of the U-Net. In Section 3, we apply
the CNN to mitigate RFI on data taken at the Bleien Observatory.
This includes a discussion of the performance of the CNN both
on simulated and observed data. We then conclude in Section 4.
Information for downloading and installing our implementation of
the U-Net package is described in Appendix A. In Appendix B we
explain how to use the package.

2. Proposed approach

2.1. Network architecture

The U-Net Ronneberger et al. (2015) extends the architecture
of conventional CNN’s. Typically, CNN’s extract image features by
repeatedly applying convolutions on the input image followed
by an activation function and a downsampling operation. These
nested operations let the network build a conceptual hierarchy of
the content present in the training images. Some similarities can be
drawn to the human visual system where the early layers extract
small, localized features such as edgeswhile deeper layer combines
these extracted edges into more complex representations. Note
that the downsampling operations present in a CNN lead to a
contraction of the information flowing through the network. This
makes conventional CNNs notwell suited for image segmentation.

Instead of relying on a traditional architecture, the U-Net ex-
tends the contracting path of a CNN by a symmetric expansive
path. As shown in Fig. 1, the information on the extracted complex
features (orange box) from the pooling path are propagated to the
higher layers by several upsampling operations. The downsam-
pling path followed by the upsampling path resembles a U-shape
leading to the name of this network architecture.

1 Weherewill be using Tensorflow, a recent deep learning framework released
by Google.

We have reimplemented the original U-Net Ronneberger et al.
(2015), written in Caffe, with the open source library Tensorflow
following its exact architecture. Our Tensorflow U-Net imple-
mentation is written in Python with maximal flexibility in mind.
The package is published on GitHub2 under GPLv3 license and
can be used for various classification tasks (see Appendix A and
Appendix B for installation instructions and usage examples). In
the contracting path we apply in each layer two consecutive un-
padded convolutions both followed by a rectifier linear unit (ReLU)
activation and a 2 × 2 max pooling downsampling operation. At
each layer we double the number of extracted features. In the
expansive path we replace the max pooling by an up-convolution
that halves the number of features from the previous layer and
concatenate the result with the features from the corresponding
contraction layer. Finally, we apply a 1 × 1 convolution to map
the features from the last layer to the number of class labels i.e. to
a binary decision if a pixel is contaminated or not. To obtain the
probability of a pixel to belong to a certain class we convert the
resulting output map with a pixel-wise soft-max layer. The RFI
mitigation is done by inputting the TOD and applying a threshold
on the predicted probability of each pixel to be contaminated with
RFI.

2.2. Training the network

We train the parameters of the U-Net using the early Science
Verification data acquired at the Bleien Observatory Chang et al.,
2017. This data set was collected using a 7m single-dish telescope
operating in drift-scan mode with a frequency range of 990– 1260
MHz. We have processed the data with the HIDE & SEEK radio
data processing pipelines described in Akeret et al. (2017). The
pipeline employs the SumThreshold algorithm to mask pixels
contaminated with RFI. SumThreshold is a widely used iterative
algorithm that is gradually building a mask to flag the unwanted
signal. It follows the underlying assumption that the astronomical
signal is relatively smooth, both, in time and frequency direction.
While RFI signal exhibits patterns with sharp edges, the algorithm
gradually improves a model of the astronomical signal and masks
values lying above a certain threshold after subtracting this model
from the data. It startswith localized, strong RFI bursts and extends
the mask by gradually analyzing the neighboring pixels (Akeret
et al., 2017). The parameters we adopt for the SumThreshold
algorithm here are based on the procedure developed in Akeret
et al. (2017). We use the SumThreshold mask as ground truth to
train the neural network as well as to evaluate the performance of
the network on a separate test set. We note, however, that the RFI
mask produced by SumThreshold is not perfect. It has a high false-
positive-rate i.e. many pixels are incorrectly flagged as RFI. Some
RFI detection pipelines have refined this technique, e.g. by using a
scale invariant dilation operation Offringa et al. (2012). This can
improve the flagging performance of the algorithm. However, we
demonstrate in this paper that our U-Net model is robust to this
noise in the ground truth and is capable of correctly distinguishing
between non-contaminated and contaminated pixels.

We explore the effects of various parameters on the classifica-
tion performance and processing time. Here we report the effect of
the parameters that most influence the performance such as the
depth of the network (i.e. the number of layers), the number of
features extracted in the first layer, and the size of the convolution
kernels. We optimize a cross-entropy loss function to train the
network parameters using amomentum-based stochastic gradient
decent with an exponentially decaying learning rate with an initial
value of 0.2. We initialize the weights of the network using a
truncated normal distribution following the recommendation for

2 http://github.com/jakeret/tf_unet.
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