
Please cite this article in press as: D.C. Hall, Sampling random directions within an elliptical cone, Computer Physics Communications (2017),
http://dx.doi.org/10.1016/j.cpc.2017.05.010.

Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Sampling random directions within an elliptical cone
D.C. Hall
Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

a r t i c l e i n f o

Article history:
Received 1 September 2016
Received in revised form 1 May 2017
Accepted 14 May 2017
Available online xxxx

Keywords:
Monte Carlo
Random direction
Spherical sampling

a b s t r a c t

This work extends the spherical surface sampling algorithm in order to uniformly generate random
directionswithin an elliptical cone. This has applications inMonte Carlo particle transport simulations, for
example modeling asymmetric beam divergence or scattering interactions. Two methods are presented.
The first obeys the strict boundary of the elliptical cone. The second relaxes this requirement, increasing
the range of generated directions by up to 10% for elliptical cones of extreme eccentricity. However, the
second method is able to generate directions beyond the equator.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Isotropically sampling 3D directions (i.e. uniformly sampling
points upon the surface of the unit sphere) is a common problem in
Monte Carlo programs, with a surprising variety of solutions [1–5].
The optimal sampling algorithm [4–6] generates two independent
uniform variates, ηx and ηy, over the domain (−1, 1) until they
satisfy η2

x + η2
y < 1. The acceptance probability is π/4 ≈ 0.79.

They are then transformed to Cartesian coordinates according to

x = 2ηx

√
1 − η2

x − η2
y

y = 2ηy

√
1 − η2

x − η2
y

z = 1 − 2(η2
x + η2

y ).

(1)

This method maps points from the unit disk onto the surface of
the unit sphere: (ηx, ηy) → (x, y, z). The transformation preserves
the 2D polar angle as the 3D azimuthal angle, whilst the 2D radial
distance ηr = (η2

x +η2
y )

1/2 directly determines the 3D z-coordinate.
This work extends the above algorithm in order to generate

random directions within an elliptical cone. This means choosing
an appropriate 2D shape from which to sample points (ηx, ηy),
before they are transformed with (1). This technique could find
applications in Monte Carlo particle transport simulations, such
as those used in high energy physics, nuclear physics, medical
physics, computer graphics rendering, and modeling of semicon-
ductors and heat transfer. The author developed this algorithm
to model asymmetric angular divergence of particle beams in the
TOPAS simulation software for radiotherapy [7].
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2. Methods

2.1. Geometric configuration

The goal is to uniformly generate random directions within the
boundaries of an elliptical cone. This is equivalent to uniformly
sampling the surface of the unit sphere enclosed by the dashed line
in Fig. 1. Precisely speaking, this is the surface of the unit sphere
that is enclosed by the upper nappe of a right elliptical conical
surface, whose apex coincides with the center of the sphere.

The elliptical cone is defined by the opening half-angles θx and
θy, and is oriented such that these are subtended by the semi-major
and semi-minor axes of the directrix. Sampled pointsmust lie upon
the surface of the unit sphere and within the conical surface, and
therefore satisfy the following two relations:

x2 + y2 + z2 = 1 (2)( x
a

)2
+

(y
b

)2
< z2 (3)

where
a = tan θx
b = tan θy.

(4)

Considering the spherical sampling algorithm, it is clear that
only a sub-domain of the (ηx, ηy) coordinates will yield directions
within the elliptical cone. This is explicitly demonstrated in Fig. 2,
which shows the (ηx, ηy) coordinates thatmap onto the dashed line
of Fig. 1. To achieve maximal acceptance probability, we sample ηx
over (−ηa, ηa) and ηy over (−ηb, ηb), where

ηa = sin(θx/2)
ηb = sin(θy/2).

(5)

These expressions are derived by turning (3) into an equation and
solving simultaneously with (2) at the boundary conditions. These
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Fig. 1. The surfaces of an elliptical cone and the unit sphere, with their intersection drawn as a dashed line. The cone has θx = 30◦ and θy = 50◦ .

Fig. 2. The solid line indicates the (ηx, ηy) coordinates that are transformed by (1)
to the coordinates of an elliptical conewith θx = 30◦ and θy = 50◦ (shown in Fig. 1).

are y = 0 and ηy = 0 for ηa, and x = 0 and ηx = 0 for ηb.
Finally, a substitution is made according to (1) and a half-angle
trigonometric identity is applied.

2.2. Method 1: strict cone definition

Generate two random variates, ηx uniform on (−ηa, ηa) and ηy
uniform on (−ηb, ηb). Select the pair if both the following criteria
are met:
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(6)

Transform the selected variates to points on the sphere using (1).
Selection criteria (6) enforce z > 0 and (3) before the coordinate
transformation (1) is performed (which features a computationally
expensive square-root function).

2.3. Method 2: relaxed cone definition

Generate two random variates, ηx uniform on (−ηa, ηa) and ηy
uniform on (−ηb, ηb). Select the pair if(

ηx

ηa

)2

+

(
ηy

ηb

)2

< 1. (7)

Transform the selected variates to points on the sphere using (1).
Since the functional form of (7) is different from that of (6), it
is apparent that the sampled points will not obey the strict cone
definition of (3). The differences are discussed below.

3. Results and discussion

The uniformity of these two sampling methods was evaluated
as recommended by Knuth [6]. First, the θ–φ bounding box of
the generating cone was divided into 20 × 20 bins, and those
bins enclosed by the generating cone were selected. Then, the
expected number of directions within each bin was computed,
accounting for the solid angle subtended by each bin and the entire
generating cone. A total of 105 directionswere generated, such that
the expected number in each bin was greater than 5. Pearson’s
χ2 statistic quantified the agreement between the observed and
expected number of directions generated within the bins. Exces-
sively high (low) χ2 values indicate that the agreement is too poor
(good) to be consistent with the uniform (random) generation of
directions. The empirical distribution function of χ2 was mea-
sured by repeating this process 200 times. Finally, the empirical
and theoretical χ2 distribution functions were compared using a
Kolmogorov–Smirnov test. This two-level test demonstrated the
uniformity of both methods (see Fig. 3).

Method 2 does not strictly obey the elliptical cone definition
(3). Although the difference in the generated range of directions
is usually negligible, it can become appreciable for elliptical cones
with extreme eccentricity. Fig. 4a demonstrates this difference for
θx = 89◦ and θy = 20◦. The acceptance probability of method 2
is constant at π/4 ≈ 0.79, since it samples (ηx, ηy) points from an
ellipse. However, Fig. 4b shows that the acceptance probability of
method 1 can decrease by up to 10%.

A benefit of disobeying the strict cone definition is that method
2 is able to support θx > 90◦ and/or θy > 90◦ (i.e. sample directions
below the equator). This is not possible inmethod 1, since the cone
is limited to a single hemisphere. Fig. 5 displays an example of the
resulting shape upon the surface of the unit sphere.

It is also possible to sample ηx and ηy from normal distribu-
tions with mean µ = 0 and a standard deviation σ of ηa and
ηb, respectively. The level sets of the probability density function
f (ηx, ηy) are ellipses, and are transformed by (1) into level sets
corresponding to boundaries that can be generated by method 2.
For this reason, normal sampling is a natural extension to method
2. These ηa and ηb now correspond to the angular spread from the
z-axis, instead of defining the boundary to generated directions. To
constrain points to the surface of the unit sphere, the variatesmust
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