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a b s t r a c t

The rates of atomic processes in cold, dense plasma are governed strongly by effects of quantum
degeneracy. The electrons follow Fermi–Dirac statistics and their high density limits the number of
quantum states available for occupation after a collision. These factors preclude a direct solution to the
usual rate coefficient integrals. We summarize the formulation of this problem and present a simple,
but efficient method of evaluating collisional rate coefficients via direct numerical integration. Numerical
quadrature has an intrinsically high level of parallelism, ideally suited for graphics processor units. GPUs
are particularly suited to this problem because of the large number of integrals which must be carried
out simultaneously for a given atomic model. A CUDA code to calculate the rates of significant atomic
processes as part of a collisional-radiativemodel is presented and discussed. This approachmay be readily
extended to other applications where rapid and repeated evaluation of many integrals is required.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fermi–Dirac statistics have long been used to describe the
distribution of electrons in metallically bonded solids, but plas-
mas of comparable electron densities have only recently become
experimentally accessible. Recent advances in short wavelength
lasers have allowed the creation of warm dense plasmas at solid or
greater densities, due to their correspondingly high critical densi-
ties. These advances have spurred investigations into the effects of
degeneracy on the atomic rates and hence on macroscopic plasma
properties [1–3].

Fermi–Dirac statistics complicate the calculation of quantities
in dense plasmas because many of the integrals in the calculations
of basic plasma properties and atomic rates, which are discussed
below, do not have closed-form solutions. Collisional-radiative
models typically require >100 rates to be assembled into the rate
matrix and may in turn be evaluated at a large number of spatial
or temporal points in line with a hydrodynamic solver. We there-
fore require a large degree of parallelism to make this problem
tractable. The Compute Unified Device Architecture is a program-
ming tool to enable large scale parallel computation on Nvidia
GPUs, which are emerging as a computational asset for physicists.

In Section 2 we review the Fermi–Dirac distribution and its
use in the integrals for atomic rates in degenerate plasmas. In
Section 3 we discuss quadrature on GPUs, whichmay be of general
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interest. In Section 4 we present the results of a simple collisional-
radiative model of a degenerate plasma, which is greatly sped up
by carrying out integrals on a GPU. Example code for generic 1-
and 2-dimensional quadrature on GPUs, as well as the collisional-
radiative model are available for download [4].

2. Definition of atomic rate coefficients

2.1. The Fermi–Dirac distribution and chemical potential

For a given electron kinetic energy ϵ, density ne and tempera-
ture Te, the Fermi probability of occupation is given by [5]

F (ϵ, Te) =
1

exp
(

ϵ−µ

Te

)
+ 1

, (1)

where µ(Te, ne) is the chemical potential. It is convenient to use
the familiar units of electronvolts (1 eV = qe J, where qe is the
elementary charge) for energies; temperatures are implicitly mul-
tiplied by the Boltzmann constant, kB = 8.617 eV K−1. The energy
distribution function is given by

fFD(ϵ, Te) =
G
ne

√
ϵF (ϵ, Te) (2)

with G = 4π
(
2me/h2

)3/2 the degeneracy of a free electron. The
chemical potential is defined so as to normalize this distribution,
but it is computationally convenient to use a direct formula; for
example, see the Padé approximation given here [6]. A collision

http://dx.doi.org/10.1016/j.cpc.2017.06.003
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.06.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:va567@york.ac.uk
http://dx.doi.org/10.1016/j.cpc.2017.06.003


Please cite this article in press as: V. Aslanyan, et al., Efficient calculation of degenerate atomic rates by numerical quadrature on GPUs, Computer Physics Communications
(2017), http://dx.doi.org/10.1016/j.cpc.2017.06.003.

2 V. Aslanyan et al. / Computer Physics Communications ( ) –

in a degenerate plasma may only occur if there are sufficient
unoccupied quantum states for all the resultant fermions and we
take account of this by using Pauli blocking factors,

F̃ (ϵ, Te) = 1 − F (ϵ, Te). (3)

Finally, the Fermi–Dirac distribution has a corresponding heat
capacity defined through

CV (Te, ne) =
G
ne

∫
∞

0

ϵ3/2

1 + exp( ϵ−µ

T )
dϵ. (4)

The total electron kinetic energy density ε = neCV allows the
electron temperature to be determined. We do this by inverting
the heat capacity through a Padé approximation.

2.2. Definition of atomic rate coefficients

The rate coefficients of atomic or nuclear processes are typically
given by an integral over the cross-section weighted by the distri-
bution function, typically denoted ⟨σv⟩. The usual approach to de-
fine such integrals is usually ad hoc; a more rigorous approach [7]
is generalized for degenerate rates in Appendix A.

The total collisional excitation rate follows directly from the
treatment in Appendix A, given by

J↑(Ej, Te, µ)

= NiG

√
2
me

∫
∞

Ej

Ω

(
ϵ0

Ej

)
F (ϵ0, Te)F̃ (ϵ0 − Ej, Te)dϵ0, (5)

where Ej is the excitation energy and the collision strength is
related to the total cross-section byΩ(ϵ0) = σ (ϵ0)/ϵ0.We consider
a collision strength typical of optically allowed transitions,

Ω

(
ϵ0

Ej

)
= B0 ln

(
ϵ0

Ej

)
+

5∑
k=1

Bk

(
ϵ0

Ej

)−(k−1)

. (6)

The methods presented here can be extended to optically forbid-
den transitions straightforwardly.

The collisional ionization rate is given by

K↑
= NiG

√
2
me

∫
∞

Ei

∫ ϵ0−Ei

0
ϵ0

dσ ↑

dϵ1
F (ϵ0, Te)F̃ (ϵ1, Te)

× F̃ (ϵ0 − ϵ1 − Ei, Te)dϵ1dϵ0, (7)

where Ei is the ionization potential and dσ↑

dϵ1
is the differential

cross-section. This differential cross-section gives the distribution
of outgoing electrons and is necessary to account for both blocking
factors in this case. The experimental uncertainty in differential
cross-sections is typically much higher than that for the total colli-
sional ionization cross-sections. We have proposed [3] a differen-
tial cross-section similar to that by Mott, modified to be consistent
with the well-known BELI [8] formula,

dσ ↑

dϵ1
=

1
2Eiϵ0

[
C0Ei

(ϵ1 + a)(ϵ1 + b)

+
C0Ei

(ϵ0 − ϵ1 − Ei + a)(ϵ0 − ϵ1 − Ei + b)

+

∑
k=1

kCk
ϵk−1
1 + (ϵ0 − ϵ1 − Ei)k−1

ϵk
0

]
, (8)

with the quantities

a =
1
2

(√
ϵ2
0 + 4E2

i − ϵ0

)
b = a + Ei.

In the calculations below, we consider for simplicity that the outer
electrons are ionized preferentially, as the effect of Pauli blocking
is severe for inner-shell electrons.

These atomic rates may be related to their inverse through sim-
ple algebraic formulas, which can be derived using the approach
in Appendix A together with appropriate micro-reversibility re-
lations [7], noting in particular that F̃ (ϵ, Te) = exp((ϵ − µ)/Te)
F (ϵ, Te). In particular, we have for the rate of collisional deexcita-
tion

J↓ =
gj
gj′

exp(Ej/Te)J↑, (9)

where the g factors correspond to the degeneracies of the upper
and lower level respectively. For three body recombination, we
have

K↓
=

gi
gi+1

exp(µ/Te) exp
(
Ei
Te

)
K↑. (10)

The total rate of photoionization, for radiation with a photon of
energy ϵγ and spectral intensity I(ϵγ ), is given by

L↑
= Ni

∫
∞

Ei

σγ (ϵγ )I(ϵγ )F̃ (ϵγ − Ei, Te)dϵγ . (11)

The photoionization cross-section typically falls off above thresh-
old as some negative power of the photon energy; for example, the
cross-section for hydrogen-like ions scales as σ (ϵγ ) ∝ ϵ−3

γ Z−2. We
parameterize the photoionization cross-section above threshold
by

σγ = D0

(
ϵγ

Ei

)−2

+ D1

(
ϵγ

Ei

)−3

. (12)

Aside from including the Fermi–Dirac energy distribution, the ef-
fects of degeneracy do not alter the rate of radiative recombination
from its classical form, because the outgoing photons are bosons
and not subject to Pauli blocking. Furthermore, radiative recom-
bination is likely to be insignificant compared to photoionization
for the large radiation fluxes in high energy density physics exper-
iments.

Radiative processes have an effect not only on the ionization of
the plasma, but also the temperature. Photoionization also heats
the plasma, because the remainder of the photon energy is carried
away mostly by the ionized electron. The corresponding rate of
change in the electron kinetic energy is(
dε
dt

)
L
= Ni

∫
∞

Ei

(ϵγ − Ei)σγ (ϵγ )I(ϵγ )F̃ (ϵγ − Ei, Te)dϵγ . (13)

Photons are captured by free electrons in the presence of ions by
inverse bremsstrahlung, with a corresponding rate of change of
kinetic energy(
dε
dt

)
IB

=

∫
∞

ϵc

∫
∞

0
κIB(ϵγ )I(ϵγ )F (ϵ0, Te)

× F̃ (ϵγ + ϵ0, Te)dϵ0dϵγ , (14)

where the inverse bremsstrahlung absorption coefficient is given
by

κIB =
1

6
√
6π5/2

e6(hc)2

ε3
0(mec2)3/2

ϵ−3
γ

[
1 − exp

(
−

ϵγ

Te

)] Z∑
i=1

i2Ni,j. (15)

Radiation with frequencies below the resonant electron frequency
is reflected and we therefore take the corresponding critical pho-
ton energy ϵc = h̄c ×

√
nee2/mec2ε0 as the lower limit for the

inverse bremsstrahlung integral. The integral over the electron
energy ϵ0 can be carried out analytically, leaving the integral over
the photon energy to be done numerically.



Download	English	Version:

https://daneshyari.com/en/article/4964341

Download	Persian	Version:

https://daneshyari.com/article/4964341

Daneshyari.com

https://daneshyari.com/en/article/4964341
https://daneshyari.com/article/4964341
https://daneshyari.com/

