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a b s t r a c t

A novel, optimized numerical method of modeling of an exciton–polariton superfluid in a semiconduc-
tor microcavity was proposed. Exciton–polaritons are spin-carrying quasiparticles formed from photons
strongly coupled to excitons. They possess unique properties, interesting from the point of view of funda-
mental research as well as numerous potential applications. However, their numerical modeling is chal-
lenging due to the structure of nonlinear differential equations describing their evolution. In this paper,
we propose to solve the equations with a modified Runge–Kutta method of 4th order, further optimized
for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel
environments and utilizing vector instructions. The programs form the EPCGP suite which has been used
for theoretical investigation of exciton–polaritons.

Program summary

Program title: EPCGP
Catalogue identifier: AFBQ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: BSD-3
No. of lines in distributed program, including test data, etc.: 2157
No. of bytes in distributed program, including test data, etc.: 498994
Distribution format: tar.gz
Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts).
Computer:Modern PC (tested on AMD and Intel processors), HP BL2x220.
Operating system: Unix/Linux and Windows.
Has the code been vectorized or parallelized?: Yes (OpenMP)
RAM: 200 MB for single run
Classification: 7, 7.7.
Nature of problem: An exciton–polariton superfluid is a novel, interesting physical system allowing
investigation of high temperature Bose–Einstein condensation of exciton–polaritons-quasiparticles
carrying spin. They have brought a lot of attention due to their unique properties and potential
applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum
system confined within a semiconductor microcavity. It is described by a set of nonlinear differential
equations similar in spirit to the Gross–Pitaevskii (GP) equation, but their unique properties do not allow
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standard GP solving frameworks to be utilized. Finding an accurate and efficient numerical algorithm as
well as development of optimized numerical software is necessary for effective theoretical investigation
of exciton–polaritons.
Solution method: A Runge–Kutta method of 4th order was employed to solve the set of differential equa-
tions describing exciton–polariton superfluids. Themethodwas fitted for the exciton–polariton equations
and further optimized. The C++ programs utilize OpenMP extensions and vector operations in order to
fully utilize the computer hardware.
Running time: 6h for 100 ps evolution, depending on the values of parameters

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose a novel, optimized numerical method of modeling exciton–polariton superfluid in a semiconductor
microcavity. Excitons are electron–hole pairs, bound by the Coulomb force, behaving as a single electrically-neutral particle [1,2].
Microcavities pumped by laser beams confine light in the form of a standing wave between highly reflective Bragg mirrors, which are
made frommultiple layers of different refractive index, see Fig. 1. Between the reflectors there are located semiconductor quantum wells
where the excitons are formed and can freely move in the X–Y plane. If the wells are located in the anti-nodes of the standing wave, they
strongly couple to photons and thus, they form new quasiparticles—the exciton–polaritons.

Strong coupling between photons and excitons is revealed with their dispersion relation. Photons in the microcavity possess quadratic
dispersion relation. The dispersion of bulk excitons is approximately constant due to their relatively large mass. In the weak coupling
regime, the two curves cross. However, solving the Schrödinger equation for the strongly coupled system yields two anti-crossing
eigenstates called upper (UP) and lower exciton–polaritons (LP), Fig. 2. The energy difference between LP andUP is called the Rabi splitting.
An excellent review on exciton–polaritons can be found in [3,4].

Exciton–polaritons are an out-of-equilibrium quantum system due to the interplay between their lifetime, up to 200 ps, and laser
pumping sustaining their number in the cavity. The compound nature of polaritons results in the fact that their effective mass is lower
than the mass of a free electron, and in the regime of their low density they can be described as bosons with a spin degree of freedom [5,
6,3]. Thus, in specific conditions, they form a quasi-particle counterpart of an atomic Bose–Einstein condensate (BEC) [4,7] and reveal
superfluidity [8] in relatively high temperatures [9].

Except for their amazing physical properties being a subject of the fundamental research, recently exciton–polaritons have brought a lot
of attention due to their potential applications in optoelectronic integrated circuits, consisting of transistors [10], spin-switches [11] and
logic gates [12–14]. Additionally, they can form localized nondiffracting X-waves [15,16] which could be used for transferring a classical
signal between elements in the circuits. Thus, polaritonics is regarded as a future of newphotonic–electronic devices, whichwill be capable
of processing information at a rate of terabits per second and frequencies in the range 100 GHz–10 THz [17].

The simplest physical model of the exciton–polariton superfluid is given by the Gross–Pitaevskii equation (GPE). This is a nonlinear
Schrödinger equation, which omits the quasi-particle nature of polaritons and which was primarily used for studying an akin discipline—
the physics of ultracold quantum bosonic gases (of atoms) and their BECs. For this reason, over the years, a variety of numerical methods of
solving GPEswere developed and implemented in software. They range from themost general, suitable for broad investigation of the gases,
to specially fitted to specific systems and problems. Most papers devoted to numerical investigation of GPEs focused on their stationary
solutions [18]. Various condensate geometries [19], simplifications and special cases [20] were taken into account. Numerical methods
involved finite-difference approach [19,21,22], bi-k-Lagrange elements [23], spectral collocation methods with Chebyshev polynomials of
the first and second kind [24] aswell as basis set expansion technique [25]. Time-dependent equationswere solvedwith implicit and semi-
implicit Crank–Nicolson methods [18,26–29], Euler scheme [22], third and fourth-order adaptive Runge–Kutta methods [30], split-step
finite difference method [22] and time-splitting sine and Fourier pseudospectral methods [31,32]. In the latter case, space was discretized
with second- and fourth-order finite differences, exponential splines [29] or with Chebyshev–Tau spectral discretization method [26].

As a result, several mature software packages were developed. The OCTBEC utilizes optimal quantum control theory to model various
BECs in Matlab [33]. Similar libraries were prepared in Fortran [18] and C programming languages [32]. The most advanced toolkit is the
GPELab, implemented inMatlab [34,35]. It combines various listedmethods in order to solve both stationary and time-dependent GPEs and
enables tackling sets of equations. The hardware utilized for computations involved diverse platforms: OpenMP andMPI-based computer
clusters [36], NVIDIA’s CUDA parallel architecture [37,38] as well as Sony PlayStation 3 Cell Broadband parallel systems [39].

Deeper insight into the physics of polaritons requires however taking into account their compound character and solving a GPE for a
spinor polariton wave function, consisting of two independent components: the excitonicψx and photonicψc one. This turns the GPE into
a system of two coupled equations of different kind, of which neither is a GPE itself and thus, methods developed for solving GPEs cannot
be directly applied. Further including of the spin degree of freedom for polaritons results in the system of four equations.

Here we present the EPCGP program suite which we have developed in order to support research on exciton–polaritons in
semiconductor microcavities. The suite utilizes our novel algorithm based on the Runge–Kutta method of fourth order, optimized for the
equations describing exciton–polariton superfluid. Moreover, program routines are able to gain from the parallel computing environment
and vector operations, which significantly speeds up the computations. It allows investigation of one- and two-dimensional systems. We
believe that use of EPCGP suite goes beyond the basic theoretical work and will also find applications in preparation of experiments and
engineering of polaritonic circuits.

The paper is structured as follows. Section 2 introduces the Reader to the equations describing the exciton–polariton superfluid.
Section 3 goes into details of numerical computations, presenting the choice of algorithms, data structures and properties of the methods,
such as their stability, computational complexity and error estimation. Next, Section 4 presents a selection of interesting results obtained
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