
Computer Physics Communications 218 (2017) 10–16

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Efficient molecular dynamics simulations with many-body potentials
on graphics processing units
Zheyong Fan a,b,*, Wei Chen c,*, Ville Vierimaa b, Ari Harju b

a School of Mathematics and Physics, Bohai University, Jinzhou, China
b COMP Centre of Excellence and Helsinki Institute of Physics, Department of Applied Physics, Aalto University, Helsinki, Finland
c Computer Network Information Center, Chinese Academy of Sciences, P.O. Box 349, 100190 Beijing, China

a r t i c l e i n f o

Article history:
Received 12 October 2016
Received in revised form 2 May 2017
Accepted 4 May 2017
Available online 10 May 2017

Keywords:
Molecular dynamics simulation
Many-body potential
Tersoff potential
Stillinger–Weber potential
Graphics processing units
Virial stress
Heat current

a b s t r a c t

Graphics processing units have been extensively used to accelerate classical molecular dynamics sim-
ulations. However, there is much less progress on the acceleration of force evaluations for many-body
potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body
potentials, the force, virial stress, and heat current for a given atom are accumulated within different
loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we
provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for
many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and
heat current for a given atom can be accumulated within a single thread and is free of write conflicts.
We discuss the formulations and algorithms and evaluate their performance. A new open-source code,
GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the
double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with
about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulation is one of the most impor-
tant numerical tools in investigating various physical properties of
materials. Many applications using MD simulation demand high
performance computing. In the past decade, the computational
power of general-purpose graphics processing units (GPUs) has
been exploited to accelerate many MD simulations. Not only ex-
isting MD codes and libraries, such as AMBER [1], Gromacs [2,3],
LAMMPS [4–6], NAMD [7], and OpenMM [8] have been benefited
from utilizing GPUs as accelerators, but also new codes, such as
HOOMD-blue [9–11], HALMD [12], and RUMD [13], have been built
from the ground up to achieve high performance using one ormore
GPUs.

Most of the previous relevant works have only considered
pairwise potentials, or a special many-body potential, namely, the
embedded atom method [14–16], which are relatively simple to
implement on GPUs. GPU-acceleration of many-body potentials
such as the Tersoff [17], Stillinger–Weber [18], and Brenner [19]
potentials, which play an important role in modelling various ma-
terials, is more challenging and has only attracted some attention

* Corresponding authors.
E-mail addresses: brucenju@gmail.com (Z. Fan), weichen@cnic.cn (W. Chen).

recently [20–25]. Taking three-body interaction as an example, a
naive implementation of the force evaluation function, as usually
done in a serial CPU code, requires accumulating the forces on
three different atoms within a single thread. In a GPU kernel with
many threads, each atom is usually associatedwith one thread and
the force accumulation for an atom from the thread it belongs to
will conflict with the force accumulation for the same atom from
another thread. This causes a problem called write conflict where
two threads try to write data simultaneously into the same global
memory [26]. One way to avoid write conflict is to use atomic
operations, which are usually quite slow and can also introduce
randomness in the computation, which is undesirable for debug-
ging.

There have been some proposals to avoid using atomic oper-
ations. Hou et al. [20] proposed an algorithm for implementing
the Tersoff potential on a GPU, which has achieved impressive
performance, but requires using a special fixed neighbour list
and is thus not quite flexible. Brown and Yamada [21] proposed
a flexible GPU-implementation of the Stillinger–Weber potential
within LAMMPS, which is free of write conflicts. A similar proposal
was given by Knizhnik et al. [22]. Recently, Höhnerbach et al. [23]
developed a vectorization scheme to achieve performance porta-
bility across various parallel computing platforms for the Tersoff
potential within LAMMPS. GPU-acceleration of the more compli-
cated second-generation REBO potential [19] has also been studied

http://dx.doi.org/10.1016/j.cpc.2017.05.003
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.05.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.05.003&domain=pdf
mailto:brucenju@gmail.com
mailto:weichen@cnic.cn
http://dx.doi.org/10.1016/j.cpc.2017.05.003


Z. Fan et al. / Computer Physics Communications 218 (2017) 10–16 11

by Tredak et al. [24]. In a recently published work [25] (after we
submitted this paper), Nguyen reported significant speedups for
MD simulations with Tersoff-type potentials using one or more
high-end GPUs.

Here, we propose a general algorithm of force evalua-
tion for many-body potentials and present details of its GPU-
implementation and performance. The new force evaluation
algorithm is based on an explicit pairwise force expression for
many-body potentials derived recently [27]. In this approach, the
force, virial stress, and heat current for a given atom are well
defined and can be accumulated within a single thread. Therefore,
write conflict is absent by construction. To be specific, we discuss
the algorithm explicitly in terms of the Tersoff potential, but per-
formance evaluation is made for both the Tersoff potential and the
Stillinger–Weber potential. The implementation is done based on a
previous work [28], and the resulting code, which we call GPUMD
(Graphics Processing Units Molecular Dynamics), will be made
public soon. Using silicon crystal as a test system, we measure the
performance of GPUMD and compare it with LAMMPS.

2. Formulations and algorithms

2.1. The Tersoff many-body potential

Although the method to be introduced is applicable to any
many-body potential, it is beneficial to start with an explicit ex-
ample, which is taken as the widely used Tersoff potential. Gener-
alizations to other many-body potentials will be discussed later.

The total potential energy for a system of N atoms described by
the Tersoff potential can be written as [17]

U =
1
2

∑
i

∑
j̸=i

Uij, (1)

where

Uij = fC (rij)
(
fR(rij)− bijfA(rij)

)
, (2)

bij =
(
1+ βnζ n

ij

)− 1
2n , (3)

ζij =
∑
k̸=i,j

fC (rik)gijk, (4)

gijk = 1+
c2

d2
−

c2

d2 + (h− cos θijk)2
. (5)

Here, β , n, c , d, and h arematerial-specific parameters and θijk is the
angle formed by rij and rik, which implies that

cos θijk = cos θikj =
rij · rik
rijrik

. (6)

Our convention is that rij ≡ rj − ri represents the position
difference pointing from atom i to atom j. The magnitude of rij is
denoted as rij.

As in many empirical potentials, the energy Uij consists of a
repulsive part fR(rij) and an attractive part −bijfA(rij). The many-
body nature of the Tersoff potential is embodied in the bond order
function bij appearing in the attractive part, the value of which
depends not only on ri and rj, but also on the positions of other
atoms near atom i.

The function fC (rij) is a cutoff function, which is only nonzero
when rij is less than a cutoff distance. Therefore, a Verlet neighbour
list can be used to speed up the force evaluation. For uniform
cutoff, the standard cell listmethod is very efficient, althoughmore
sophisticated methods perform better for systems with large size
disparities [29].

For simplicity, we have presented the original Tersoff potential
formulation in a form suitable for single-element systems. Our
algorithm and implementation are more general, which can treat
systems with more than one type of atom or systems described by
a modified formulation of the Tersoff potential.

2.2. The conventional method of implementing the tersoff potential

Due to the three-body nature of the Tersoff potential, the
conventional method for evaluating the interatomic forces is sig-
nificantly different from that in the case of a simple two-body
potential. Algorithm 1 presents a pseudo code for the conven-
tional method as implemented in most existing MD codes such as
LAMMPS [4]. The following symbols are used:

• N: number of atoms
• Ui: potential energy of atom i
• Fi: total force on atom i
• Wi: per-atom virial stress of atom i
• NNi: number of neighbour atoms of atom i
• NLim: index of themth neighbour atom of atom i
• Ji: per-atom heat current of atom i.

Algorithm 1 Pseudo code for the conventional method of evaluat-
ing many-body force and related quantities.
1: for i = 0 to N − 1 do
2: Initialize Ui, F i, andWi to zero
3: end for
4: for i = 0 to N − 1 do
5: for m = 0 to NNi − 1 do
6: j← NLim
7: Ui ← Ui +

1
2Uij

8: F i ← F i + F (ij)
i

9: F j ← F j + F (ij)
j

10: Wi ← Wi −
1
2 r ij ⊗ F (ij)

i
11: for n = 0 to NNi − 1 do
12: k← NLin
13: if k = j then
14: Continue
15: end if
16: F i ← F i + F (ijk)

i

17: F j ← F j + F (ijk)
j

18: F k ← F k + F (ijk)
k

19: Wi ← Wi +
1
3

(
r ij ⊗ F (ijk)

j + r ik ⊗ F (ijk)
k

)
20: Wj ← Wj +

1
3

(
r ij ⊗ F (ijk)

j + r ik ⊗ F (ijk)
k

)
21: Wk ← Wk +

1
3

(
r ij ⊗ F (ijk)

j + r ik ⊗ F (ijk)
k

)
22: end for
23: end for
24: end for
25: for i = 0 to N − 1 do
26: J i ← Wi · vi
27: end for

In Algorithm 1, the potential energy Ui ≡
∑

j̸=iUij/2 is accu-
mulated in line 7, the two-body parts of the force and per-atom
virial stress are accumulated in lines 8–9 and 10, respectively, and
the many-body parts of the force and per-atom virial stress are
accumulated in lines 16–18 and 19–21, respectively. Last, in line
26, the per-atomheat current is calculated from the per-atomvirial
stress and velocity.

The forces defined in the pseudo code can be explicitly
written as

F (ij)
i = −

1
2

∂

∂ri

(
fC (rij)fR(rij)

)
+

1
2
bij

∂

∂ri

(
fC (rij)fA(rij)

)
, (7)



Download	English	Version:

https://daneshyari.com/en/article/4964417

Download	Persian	Version:

https://daneshyari.com/article/4964417

Daneshyari.com

https://daneshyari.com/en/article/4964417
https://daneshyari.com/article/4964417
https://daneshyari.com/

