Computers and Geosciences 110 (2018) 73-80

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Local PEBI grid generation method for reverse faults

@ CrossMark

Xianhai Meng ™", Zhongxiang Duan®", Qin Yang ®", Xing Liang

@ School of Computer Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China

b State Key Laboratory of Software Development Environment, Beijing 100191, PR China
¢ Lithe IT Ltd., 69 Buchanan Street, Glasgow G1 3HL, UK

ARTICLE INFO ABSTRACT

Keywords:

PEBI grid generation
Reverse faults
Voronoi neighbors

The 2.5D PEBI (PErpendicular Blsector) grid, which is the projection or extrusion of the 2D PEBI gird, has ad-
vantages on practical reservoir modeling. However, to appropriately handle the geological features, especially the
reverse faults in reservoir, remains a difficult problem. To address this issue, we propose a local PEBI grid gen-
eration method in this paper. By constructing the Voronoi cell of a seed based on the search of its neighboring

seeds in a background grid, our method is demonstrated to be efficient and adaptable to reverse fault constraints.
In addition, the vertical and horizontal well constraints are also tackled and the cell quality is improved through
the Centroidal Voronoi Tessellations (CVT) principle. The results demonstrated that our method enables the
formation of high-quality grids and guarantees the conformity to the geological features in reservoirs.

1. Introduction

The computing accuracy, speed and convergence of the reservoir
simulation are largely dependent on the grids. Compared to the Cartesian
and Corner Point grids, which are commonly utilized in industry, the
PEBI grid, also known as the constrained Voronoi Tessellation, com-
mands much attention as it can reduce the orientation effect and adapt to
complex structures. After reviewing early studies on reservoir simulation,
Heinemann et al. (1991) claimed that the performance of PEBI grids on
overcoming the grid-orientation effect is generally as good as the
nine-point Cartesian grids and better than the five-point scheme. Palagi
and Aziz (1994) presented the use of Voronoi grids for field scale simu-
lations in combination with pre-defined geometrical modules that can be
located, scaled and rotated in the domain, allowing a good representation
of the major geological features in reservoirs.

A Voronoi cell is, by definition, always associated with a certain point,
also known as the seed of the cell (Bertin et al., 1994). Since the aspect ratio
of the horizontal scale to vertical in the reservoir field is often several orders
of magnitude, the 2.5D Voronoi grids are usually used in reservoir simu-
lation (Branets et al., 2009). These grids are constructed by projecting or
extruding the 2D Voronoi grids in the vertical or nearly vertical directions
(Gunasekera et al., 1997). In contrast to the direct generation of the Vor-
onoi grids, such as the divide-and-conquer method (Shamos and Hoey,
1975) and plane sweep algorithm (Fortune, 1987), indirect schemes
derived from the dual of a Delaunay mesh (Verma, 1996; Verma et al.,

1997), are better appreciated owing to the gradual progress of the Delaunay
triangulations. However, one of the key challenges is that the generated 2D
grids are required to conform to some geological features, including
boundaries, faults, vertical and horizontal wells, and pinch-outs. These
structural constraints pose inconveniences for the PEBI grid generation. To
resolve the faults with arbitrary size and orientation through Voronoi faces,
in particular, becomes a more daunting task.

In the scheme that handles the faults proposed by Gunasekera et al.
(1997), Voronoi seeds were set symmetrically on both sides of the faults so
that the path of the faults would be part of the Voronoi cell edges. To resolve
more complex structures in reservoir, Branets et al. (2009) suggested
defining circular disks surrounding the constraints, where both the inside
and outside of these protection areas can be split by Delaunay triangulations.
In this way, a consistent dual constrained Voronoi grid is obtained. In
addition, an approach to generate 3D PEBI grids was also introduced by
Merland et al. (2014). They optimized the positions of the seeds by mini-
mizing an objective function designed to meet the 3D structural features. The
cells were strictly Voronoi yet the constraints were not exactly recovered.

To the best of our knowledge, most of the 2D PEBI grid generation al-
gorithms tend to conduct a global tessellation according to the dual rela-
tionship between the Voronoi diagram and the Delaunay triangulation and
improve the mesh quality through the Centroidal Voronoi Tessellations
(CVT) concept (Du et al., 1999, 2010; Merland et al., 2011). However, the
complexities of the faults sometimes render the global tessellation quite
cumbersome to express in terms of constraints. This is especially true if the
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Fig. 1. Reverse fault and the 2D projection.
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Fig. 2. Voronoi cell of o and the related MVN.

reservoir contains the reverse faults (Fig. 1), which it is difficult to avoid the
overlapping after the projection or other simple mapping. The generation
of the PEBI grids adapting to these faults becomes a tough problem due to
the interference of the Voronoi seeds in the upper and lower parts of the
fault area. As far as we know, none of these previous algorithms has
addressed the reverse fault constraints in the PEBI grid construction.
PEBI grids have alocal property, i.e., the shape and size of a PEBI cell are
merely correlational with points neighboring the seed of the cell. Based on
this characteristic, we present in this paper a novel method to build the PEBI
grid that can conform to the reverse fault features. Every PEBI cell is con-
structed after the neighbors of its seed are searched with the help of back-
ground grid. The search strategy overcomes the interference of the seeds in
the upper and lower parts of the overlapping in the reverse fault areas.
Incorporating the CVT principle, we devise a strategy to generate the PEBI
grids with both high quality and the conformity to the complex structures.

2. Local generation of PEBI grids

In this section, we present our local approach to the Voronoi grid
generation with the basic idea of constructing the Voronoi cell of a seed
according to its neighboring seeds. For a Voronoi cell, the neighbors of its
seed are corresponding to its adjacent cells, which we define as the
Minimum Voronoi Neighbors of the seed.

Definition 1. Let S and M be the set of the seeds and MCS. As to a
single point o € S, M is said to be the Minimum Voronoi Neighbors (MVN)
of o if and only if o¢gM and M contains Vp €S that sat-
isfies Vor(p)nVor(o)#@.

Under the definition above, Vor(+) means the Voronoi cell related to
the seed and S is assumed to be in general position (Guibas and Mitchell,
1992). As is shown in Fig. 2, the Minimum Voronoi Neighbors of o

74

Computers and Geosciences 110 (2018) 73-80

is {a,b,c,d, e}.

According to the dual relationship between the Voronoi diagram and
the Delaunay triangulation, the triangles, which are formed by con-
necting seeds related to adjacent Voronoi cells and sharing the same
vertex o, are part of a Delaunay triangulation (Cheng et al., 2012). We call
the set of these triangles the local Delaunay triangle set of o, denoted by
LDTSet (illustrated with the dashed lines in Fig. 2). No seed, as the
Delaunay triangulation is defined, falls strictly inside the circumcircle of
any triangle in the LDTSet. In light of this fact, we design an incremental
algorithm that successively adds the other seeds to the plane and replaces
the elements in the MVN and LDTSet to guarantee that the circumcircles
of the triangles in the LDTSet contain no seed.

Aswe show the instance in Fig. 3, the added seeds are p;(0 < i < 6) and
before the LDTSet is closed (the triangles in LDTSet fully cover the neigh-
borhood of point 0), there are two seeds p! and p” where the ray op' and op”
witness the triangles on only one side. The two rays divide the space into
sector A and sector Bwhile A is the one that contains the triangles in LDTSet.
The signed areas Sy, o pt) @nd Sar op,) are calculated to determine which
sector p; is located in. It is noted that if any of the signed areas is positive, p;
will fall into sector B. We assume that p! is identical to p” and sector A covers
the entire region after the LDTSet is closed (after Fig. 3(c)).

If the new seed p; lies in sector B, we will connect it with the point o
and p! or p’, with one or two new triangles brought in the LDTSet
(Fig. 3(a) and (c)). Yet, if the seed is located in the circumcircles of the
triangles in sector A, it will witness the replacement of old triangles with
the new ones (Fig. 3(b) and (d)). Besides, as shown in Fig. 3(e), a few flips
may also be executed to remove illegal edges for every added triangle in
the LDTSet to maintain a Delaunay triangulation (Guibas et al., 1992).
The final MVN set is the vertices of the triangles in the LDTSet except o,
which is {po,p2,ps,ps,pe} in Fig. 3(f). Afterwards, the Voronoi cell
related to o can be constructed by collecting the perpendicular bisectors
of the connected lines between o and its neighbors.

Finally, the procedure to adjust the MVN and LDTSet according to the
added seed, which is depicted as the algorithm MVNTestForp and
edgeLegalization, is explicated as follows.

Algorithm MVNTestForp(o, p, MVN, LDTS et)
Input the seed o for MV N search;
the added seed p for test;
current MVN and LDTS et;
Output updated MVN and LDT S et;

1. If MVN = 0, then mark p to be p’ and add it into MVN,
return.

2. If MVN contains only one seed p'.

(a) If p lies on the segment op', then replace p' with p,
return.

(b) Otherwise, add p into the MVN and update p' and
P Add A(p', 0, p") into the LDTS et, return.

3. If p lies in sector B, then add p into the MVN. For
any of the two triangle A(p,o,p") and A(p’,o0,p) that
has a positive signed area, add it into the LDTSer.
Call edgeLegalization(op!, MVN, LDTS ef) and edgele-
galization(op”, MV N, LDT S et) to maintain the LDTS et
to be a Delaunay triangularization.

4. Otherwise, p lies in sector A.

(a) If p lies on the edge op;, then replace the seed and
vertex p; with p for the MV N and triangles in the
LDTS et. For any edge op; opposite p, call edgelLe-
galization(op;, MVN, LDTS et).

Otherwise, let p;p; be the edge that inter-

sects with the ray op. If p lies in the cir-

cumcircle of A(p;,0,p;), then add p into the

MVN. Use A(p,o,p;) and A(p;,0,p) to re-

place A(p;,0,p;) in the LDTSet. Call edgele-

galization(op;, MVN, LDT S et) and edgelegaliza-
tion(op;, MVN, LDTS et).

5. Update p! and p’, return.

(b)
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