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A B S T R A C T

This paper provides a solution to the problem of estimating the mean value of near-land-surface temperature
over a relatively large area (here, by way of example, applied to mainland Spain covering an area of around half
a million square kilometres) from a limited number of weather stations covering a non-representative (biased)
range of altitudes. As evidence mounts for altitude-dependent global warming, this bias is a significant problem
when temperatures at high altitudes are under-represented. We correct this bias by using altitude as a secondary
variable and using a novel clustering method for identifying geographical regions (clusters) that maximize the
correlation between altitude and mean temperature. In addition, the paper provides an improved regression
kriging estimator, which is optimally determined by the cluster analysis. The optimal areal values of near-land-
surface temperature are used to generate time series of areal temperature averages in order to assess regional
changes in temperature trends. The methodology is applied to records of annual mean temperatures over the
period 1950–2011 across mainland Spain. The robust non-parametric Theil-Sen method is used to test for
temperature trends in the regional temperature time series. Our analysis shows that, over the 62-year period of
the study, 78% of mainland Spain has had a statistically significant increase in annual mean temperature.

1. Introduction

Changes in near-land-surface temperatures are perhaps the most
common and reliable indicator of global warming (Robeson, 1994).
Near-land-surface temperature is usually measured at a finite number
of irregularly spaced sampling locations comprising networks of
weather stations. Although temperature measurements are affected
by many factors, including longitude, latitude, altitude, slope orienta-
tion, atmospheric circulation and proximity to the sea, altitude is the
most significant variable and explains most of the spatially dependent
variance in temperature (Hudson and Wackernagel, 1994). In moun-
tainous areas, altitude is the simplest direct measurement that is most
highly correlated with temperature (Dodson and Marks, 1997;
Benavides et al., 2007). The correlation is usually linear and negative
so that temperature decreases as altitude increases with, in general, a
mean gradient of 0.6 °C per 100 m of altitude (Viers, 1975). However,
for large areas (several degrees of latitude), the many other factors
listed above may affect the temperature in such a way that the linear
relationship between altitude and temperature is much weaker be-
cause, for example, different climate factors are merged within the

large area. For example, for mainland Spain the Mediterranean marine
influence is different to the Atlantic marine influence. In addition,
temperature measurements are biased because weather stations tend to
be located at low altitudes (Rolland, 2002) and areas at high altitudes
(for example, mountainous areas) are poorly represented (Robeson,
1994). This under-representation is particularly important as evidence
mounts for altitude-dependent global warming (see, for example, Pepin
and Lundquist, 2008 and Mountain Research Initiative EDW Working
Group, 2015). Fig. 1 shows a histogram of altitudes obtained from a
digital elevation model (DEM) of mainland Spain together with a
histogram of the altitudes of weather stations for the year 1994. This
figure shows that 25% of the surface of mainland Spain has altitudes
less than 400 m and 20% of the surface has altitudes greater than
1000 m; whereas, 42% of the temperature monitoring stations (i.e., the
data collection points) are located at altitudes less than 400 m and only
10% of the stations are at altitudes greater than 1000 m. This problem
can be solved by using the DEM altitude as a secondary variable
together with the linear relationship between altitude and temperature.
However, the correlation of altitude and temperature over large areas is
relatively small because of the influence of other factors such as
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latitude, longitude, proximity to the sea, pressure and wind patterns.
Thus, it is useful to identify zones in which the correlation between
altitude and temperature is as strong as possible. Cluster analysis is
highly suited to this purpose.

Clustering algorithms (Stooksbury and Michaels, 1991; Fovell and
Fovell, 1993; Gerstengarbe et al., 1999; DeGaetano, 2001; Unal et al.,
2003; Huth et al., 2008; Mahlstein and Knutti, 2010; Cannon, 2012;
Tang et al., 2012; Zscheischler et al., 2012) have been used for similar,
but not identical, problems to the one dealt with here. In this work we
propose a new cluster method that has two novel aspects. The first is
the recognition that the problem is a particular form of a constrained
cluster analysis problem. The second is accounting for the spatial
correlation of the data when testing the spatial correlation of the
residuals of the regression of temperature on altitude for the clusters.
There is no requirement for the obtained clusters to coincide with
climatic regions because the definition of the latter differs from that of
the obtained clusters. For example, the Spanish state meteorological
agency (la Agencia Estatal de Meteorología) defines climate regions on
the basis of the Köppen-Geiger Climate Classification (AEMET, 2011),
which is a classification system based on the assumption that native
vegetation is the best expression of climate. The purpose of our
clustering approach is not to identify climate regions but to obtain
regions with a high correlation between temperature and altitude. The
regions resulting from the cluster analysis are not interpreted clima-
tologically, they are used solely to obtain optimal estimates of mean
areal temperatures. In addition, the regional clusters implicitly take
account of secondary variables such as latitude, longitude and proxi-
mity to the sea. A detailed explanation of the methodology employed in
this study is given in the following section.

2. Methodology

Geostatistical methods are widely used for mapping temperature
(Hudson and Wackernagel, 1994) and estimating areal values of
temperature (Ishida and Kawashima, 1993). The mean areal value of
temperature over a particular area is defined by:

∫T
χ

T u du= 1 ( )
χ (1)

where χ⊂ 2 is the zone of interest of finite area and T u( ) is the
temperature at the spatial point location u χ∈ .

The integral in Eq. (1) is approximated by summing the tempera-
tures of a discrete pixel or small cell representation of the zone of
interest:
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k
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i
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where k is the number of discrete cells comprising the zone χ⊂ 2 and
T u( )i is the temperature at the ith cell.

The value T u( )i is usually unknown and must be estimated from a
finite set of data values. To avoid the bias introduced by the data
(because of over-representation of low altitudes) and to account for the
correlation between altitude and temperature, the altitude of each cell
is determined from a DEM of the zone of interest. For very large zones,
such as mainland Spain with a surface area of 492,072 km2, the
relationship between altitude and temperature would be obscured if
data from all temperature stations were considered together. This is
because the topography of the Iberian Peninsula is complex and there
are many specific effects that change with latitude and longitude; for
example, the different Atlantic and Mediterranean marine influences,
the different frequencies of easterly winds in the Mediterranean area
and westerly winds in the Atlantic area, the heating and cooling of
hillsides depending on their orientation and perturbation effects such
as the incursion of relatively cold air masses from the Atlantic. For
these reasons we divide the zone of interest into smaller areas in which
the relationship between altitude and temperature is stronger (higher
negative correlation between altitude and temperature). These areas,
which maximize the correlation between altitude and temperature, are
identified by a new cluster analysis procedure.

Classical cluster analysis identifies groups of objects that are
similar. It does so by maximising the similarity of objects (in our case,
temperature measurements from weather stations) within a group and
maximising the dissimilarity of different groups of objects (Gordon,
1996). There are two broad types of clustering methods: hierarchical
clustering and non-hierarchical clustering. Among the non-hierarchical
clustering algorithms the most widely used is the k-means algorithm.
The similarity of objects is usually defined in terms of a distance (e.g.,
Euclidean, Mahalanobis) according to the measured characteristics of
the objects.

For the problem addressed in this paper, the first difference with
respect to classical clustering is that, instead of defining the similarity
measure as a distance between the objects of a group, it is an objective
function to be maximised or minimised. The second difference is that
the problem addressed in this paper is a case of constrained clustering
in which a contiguity constraint restricts the sets of allowable solutions
(Gordon, 1996), i.e., the objects in each group must comprise a
spatially contiguous set. Thus, given a number of groups, an object
can change its membership from group A to group B if two require-
ments are met: (i) groups A and B are contiguous and (ii) the value of
the objective function is improved. Clustering temperatures into
regions with high linear correlation between altitude and temperature
can thus be seen as a contiguity-constrained optimisation problem.

The first issue is the definition of clusters and contiguity. The
locations of the weather stations are used as the seeds of a Voronoi
tessellation of the geographic space covered by the stations. A cluster,
or group, of weather stations (or of the corresponding temperature
measurements) is a union of contiguous Voronoi cells and the
boundary of the cluster is the outermost sequence of its constituent
cell boundaries. Two clusters are contiguous if they share a boundary. A
member, or object, belonging to cluster A is contiguous with cluster B if
its Voronoi cell shares a boundary with the Voronoi cell of any member
of cluster B. These definitions are used in the application of the
contiguity constraint.

In the proposed algorithm for contiguity-constrained classification
of a set of N objects (weather stations) the algorithm starts with an
exhaustive classification into M groups. The manner in which this
starting classification is obtained is described below. The classification
is exhaustive in the sense that the N objects have been classified and
each belongs to one of the M groups.

For any given configuration of groups G G( ,…, )M1 the objective
function, OF G G( ,…, )M1 , of the configuration is defined by:

Fig. 1. Histogram of digital elevation model (DEM) altitudes for mainland Spain (blue)
and altitudes of weather stations for the year 1994 (green). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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