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A B S T R A C T

The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity
analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with
different moveouts is computationally expensive for large data sets. In this paper we present a new method for
fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the
main computational parts reduce to computing convolutions. This allows for fast implementations by means of
FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates
in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a
computational platform for this purpose, due to the hardware supported interpolation routines as well as
optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is
suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using
this approach.

1. Introduction

In the processing of Common-Midpoint gathers (CMPs), the
hyperbolic Radon transform has proven to be a valuable tool for
instance in velocity analysis (Clayton and McMechan, 1981;
Greenhalgh et al., 1990); aliasing and noise removal (Turner, 1990);
trace interpolation (Averbuch et al., 2001; Yu et al., 2007); and
attenuation of multiple reflections (Hampson, 1986). The hyperbolic
Radon transform is defined as

∫f τ q f τ q x x dx( , ) = ( + , ) ,h
−∞

∞
2 2 2

(1)

where the function f t x( , ) usually corresponds to a CMP gather. Here,
the parameter q characterizes an effective velocity value; and τ
represents the intercept time at zero offset.

Several versions of Radon transforms are used in seismic proces-
sing, e.g., straight-line, parabolic, and hyperbolic Radon transforms. In
many applications there is a need for a sparse representation of seismic
data using hyperbolic wave events. One way to get sparse representa-
tions is by using iterative thresholding algorithms with sparsity
constraints (Daubechies et al., 2004; Sacchi and Ulrych, 1995).
Popular applications using such representations are seismic data
interpolation and wavefield separation (Jiang et al., 2016; Trad, 2003).

Since iterative schemes for computing such representations require the
application of the forward and adjoint operators several times, it
becomes important to use fast algorithms to limit the total computa-
tional cost.

Note that the direct summation over hyperbolas in (1) has a
computational complexity of N( )3 , given that the numbers of samples
for the variables t x τ q, , , are N( ). There are many effective
( N N( log )2 ) methods for rapid evaluation of the traditional Radon
transforms, or the parabolic Radon transform, see Beylkin (1984);
Fessler and Sutton (2003); Schonewille and Duijndam (2001). The
hyperbolic Radon transform is, however, more challenging.
Nonetheless, a fast ( N N( log )2 ) method for hyperbolic Radon trans-
forms was recently presented in Hu et al. (2013). The method is based
on using the fast butterfly algorithms described in O'Neil (2007) and
Candès et al. (2009), and versions addressing computational efficiency
are presented in Poulson et al. (2014), Li et al. (2015b, 2015a) and Li
and Yang (2016).

A fast method for the standard Radon transform was proposed
in Andersson (2005) by expressing the Radon transform and its adjoint
in terms of convolutions in log-polar coordinates. To use this approach,
it is necessary to resample data in log-polar coordinates, and this
requires some interpolation method. An important property of such a
scheme is that since the interpolation procedures are performed in the
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Radon and image domains, the errors will be kept local. On the
contrary, the interpolation errors in the frequency domain will create
global non-systematic errors when switching back to the time-space
domain. Since these non-localized errors contribute to the general
structure of the function, they have to be mainly controlled.

Computationally efficient algorithms for GPUs were presented for
the log-polar-based approach in Andersson et al. (2016). In this paper
we propose to use the same approach and construct algorithms with
complexity N N( log )2 for evaluation of the hyperbolic Radon trans-
form. We present computational performance tests confirming the
expected accuracy and the computational complexity, as well as
predicted computational speed-ups for parallel implementations.
Finally, we present several synthetic and real data tests using the
hyperbolic Radon transform for data interpolation and multiple
attenuation.

2. Method

To begin with, we note that functions f t x( , ) describing CMP
gathers are symmetric with respect to x=0. Hence, by introducing

f s y
f s y

y
( , ) =

( , )
2

,∼
(2)

it follows that

∫ ∫f τ q f τ q x x dx f τ q y y dy( , ) = 2 ( + , ) = 2 ( + , ) .∼
h
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(3)

The resulting expression in (3) has a form of the Radon transform over
straight lines, and a fast algorithm for the evaluation of this was
presented in Andersson et al. (2016), referred to as the log-polar Radon
transform which is based on rewriting the key operations as convolu-
tions in a log-polar coordinate system. In Section 2.1 we briefly recall
the construction of the log-polar Radon transform and discuss how to
adjust this method for optimal performance when processing seismic
data, and in Section 2.2 we introduce coordinate transforms as well as
sampling/interpolation requirements for accurate evaluation of

f τ q( , )h .
The fact that the hyperbolic Radon transform can be computed by a

combination of a change of variables along with an application of the
regular Radon transform implies that it can be evaluated using many
different methods for computing the regular Radon transform, includ-
ing methods with an hierarchical decomposition of the Radon trans-
form (Basu and Bresler, 2000; George and Bresler, 2007), methods
based on Fourier slice theorem (Beylkin, 1995; Fessler and Sutton,
2003), or chirp-Z transforms (Averbuch et al., 2006). In Andersson
et al. (2016) a thorough comparison between fast implementations of
Radon transform is presented, and where the log-polar implementation
has an advantage with respect to computational performance in
comparison to other approaches.

Another important aspect is the computational accuracy.
Depending on how large approximation errors that are acceptable,
different computational speedups can be achieved. For some applica-
tions rather low level of accuracy (i.e., errors of say 10%) could be
acceptable. This could for instance be the case of event detection (but
not removal). In this paper, we aim at keeping an accuracy level of a
couple of digits, since this seems to be enough for most seismic
applications. The accuracy level will be dependent on the interpolation
error, and we show that this error can be reduced if higher order
interpolation kernels are used.

Different algorithms also have different behavior in terms of how
interpolation errors propagate. In this regards, the proposed method
has an advantage, since the interpolation takes place in the measure-
ment domain rather than in the frequency domain, which will keep
errors more localized.

2.1. Log-polar Radon transform

The standard Radon transform (cf. (3)) can be written in terms of a
double integral

∫ ∫f τ q f s y δ s τ q y dyds( , ) = ( , ) ( − − ) ,∼ ∼2 2 2 2
(4)

where δ denotes the Dirac distribution. In Andersson et al. (2016) one
works with the log-polar coordinates
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By introducing ζ θ ρ δ θ e( , ) = (cos( ) − )ρ , it turns out that the Radon
transform can be efficiently evaluated using the log-polar Radon
transform

∫ ∫f θ ρ θ f θ ρ e ζ θ θ ρ ρ dρ dθ( , ) = cos( ) ( ′, ′) ( − ′, − ′) ′ ′∼ ∼ ρ
lp

′

where, by abuse of notation, we use the same notation f∼ for both
coordinate representations.

However, the above representation is not suitable for treating
functions f∼ with support near the origin, since the origin is represented
by ρ = −∞. A way around this obstacle is to make a translation so that
the support of f∼ is moved away from the origin, and then work with
functions supported within a subset of a unit circle-sector of opening
angle β as in Fig. 2, right. In this figure the procedures of scaling and
rotations are also applied in order to make a proper fit and connection
to the interval for variable q from (4). The scale parameter, the rotation
angle, as well the opening angle β will be defined in what follows. With
this setup, the function f∼ in log-polar coordinates and its log-polar
Radon transform f θ ρ( , )∼

lp both have compact support. In this work
we consider a simplified version with one circle-sector, because the
hyperbolic Radon transform is typically computed for some small
interval in the slowness variable q, which is directly related to the angle
β. In contrast, three circle-sectors were used in Andersson et al. (2016),
see Fig. 3. This is because that paper was aimed at treating data arises
from line integrals for all directions, and in this case it is necessary to
split the directional interval into at least three parts. The log-polar
Radon transform is computed for each of these parts. Computations for
all three intervals were done by using a formula for symmetric
intervals, cf. (Andersson et al., 2016, Formulas 2.5, 2.6), where
preliminary rotation procedures were applied to process non-sym-
metric intervals, see transformations mT and mS from Andersson et al.
(2016), Formulas 2.9, 2.12. The final formula for computing the Radon
transform by using preliminary rotations and the log-polar Radon
transform for the symmetric interval reads as (Andersson et al., 2016,
Formula 2.13).

To make this work consistent with our previous paper (Andersson
et al., 2016), we deal with a symmetric interval for variable θ, i.e.
θ β β∈ [− /2, /2]. Note, that other non-symmetric intervals of size β can
be considered as alternatives, but after rotation procedures (similar to
transformations mT and mS mentioned above) they would give the same
end result as using a symmetric interval to begin with. We will refer to
the implementation of lp for values θ β β∈ [− /2, /2] as the algorithm of
partial lp.

With this in mind, we now briefly explain how to make slight
modifications to the above scheme, better suited for the processing of
CMP gathers. A simplified synthetic example of a typical CMP gather is
shown in Fig. 1. Note that the function continues outside the maximum
limits given by x and t, leading to a truncation of (3), (which can be
seen e.g. as the circular artifacts in Fig. 1). Also note that there is no
data in the region above a line t=kx, i.e. high offset x and small time
intercept t, so to decrease the amount of computations we may ignore
this piece. In the coordinates (s,y) this triangle is again a triangle, but
with equation s k y= 2 . We set γ k= arctan 2. Thus, we are in practice only

V.V. Nikitin et al. Computers & Geosciences 105 (2017) 21–33

22



Download English Version:

https://daneshyari.com/en/article/4965373

Download Persian Version:

https://daneshyari.com/article/4965373

Daneshyari.com

https://daneshyari.com/en/article/4965373
https://daneshyari.com/article/4965373
https://daneshyari.com

