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A B S T R A C T

X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a
fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components
keep the segmentation of single components within these highly heterogeneous samples a challenging problem.
Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the
surrounding soil structure.

Recently, variational models in connection with algorithms from convex optimization were successfully
applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of
bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries
of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are
reported for different real-world 3D data sets as well as for simulated data. These results are compared with two
gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a
morphological approach. Pros and cons of the methods are assessed by considering geometric features of the
segmented bio-pore systems. The variational approach features well-connected smooth pores while not
detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of
interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as
observed for the other thresholding methods.

1. Introduction

Computed tomography (CT) is an efficient tool for non-destructive
imaging and the subsequent analysis of the structure of plant roots, see
Mooney (2002), Tracy et al. (2010) and the references therein.
Although the quality of CT images in soil science has rapidly improved
in recent years, the segmentation of bio-pores remains a challenging
problem. This is mainly due to the overlap of the X-ray attenuation
values between bio-pores and soil caused by organic materials, and the
elongated shape of the pores. Especially it appears if the pores contain
partly decomposed root fragments or earthworm linings. Such features
are only temporarily occupying the bio-pores and it may be desired to
omit them from the segmented bio-pore network for a separate
analysis. Fig. 1(a) shows exemplary a three-dimensional (3D) CT image
of soil with bio-pores.

The accurate segmentation of the bio-pores is of substantial interest
since the appropriate segmentation is a key determinant for the quality
of the subsequent structural analysis. For example, disconnecting bio-
pores due to poor segmentation can influence the subsequent analysis

of the bio-pore network dramatically. It may also be of interest to
exclude temporal features such as earthworm infillings from the
segmented images to be able to analyse bio-pore features such as
surface to volume ratios or network geometries independently.

In Pagenkemper et al. (2013), CT was used to investigate the effects
of root-induced bio-pores on the pore space of soil samples. These pore
spaces are made up of a variety of different pore types showing
structural heterogeneity in size, shape, and orientation. Methods
relying on local or global gray value thresholds have been successfully
applied to segment different pore systems as, e.g., Oh's and Lindquist's
indicator kriging (Oh and Lindquist, 1999) in Pagenkemper et al.
(2013) or a refined version of the double thresholding (Vogel and
Kretzschmar, 1996) in Schlüter et al. (2010). For a comparison of these
and some other methods for the segmentation of porous materials we
refer to Iassonov et al. (2009) and for those of (multiphase) soil images
with macro-pores, organic matter and rocks to Schlüter et al. (2014).

In this paper, we suggest a novel variational model for segmenting
large root channels. It consists of two ingredients: a data term which
includes a threshold depending on the depth (z-direction) of the given
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data and takes the illumination/attenuation changes in this direction
into account, and a regularizing term which is a discrete counterpart of
the total variation function (Rudin et al., 1992) and takes care of
smooth boundaries of the bio-pores.

Approaches for the denoising and segmentation of images based on
the calculus of variation have been applied very successfully in recent
years. Among the most influential examples are the Rudin-Osher-
Fatemi total-variation based image denoising model (Rudin et al.,
1992) and the Mumford-Shah (MS) model image segmentation model
(Mumford and Shah, 1989). The MS model supports smooth image
segments with small boundary lengths. Since the MS model is neither
convex nor smooth, it is hard to find a global minimizer numerically.
The simpler piecewise constant MS model focuses on piecewise
constant segments. For the two phase segmentation this model is
actually the active contour model of Chan and Vese (2001) which is still
non convex. Several convex relaxations of the piecewise constant
supervised model were proposed in the literature, also for multiphase
case, see, e.g., Lellmann et al. (2009), Nikolova et al. (2006), Pock et al.
(2009), Zach et al. (2008). These models have the advantage that they
have only global minima which can be computed by standard convex
minimization schemes. For the two phase segmentation it was shown
in Nikolova et al. (2006) that the above convex relaxed approaches find
the global minimum of the original non convex model. Our proposed
model can be considered as a modification of these convex approaches
which takes illumination changes via a special data term into account.
For a very recent comprehensive study of energy minimizing methods
for the segmentation of natural images we refer to Kappes et al. (2015).

We suggest to find the global minimizer of our convex model by the
alternating direction method of multipliers (ADMM) (Boyd et al., 2011;
Gabay, 1983) which has a simple implementation and works very
efficiently.

We compare our variational method with three other usual
segmentation approaches. More precisely, we apply indicator kriging
(Oh and Lindquist, 1999) as used in Pagenkemper et al. (2013), a
global gray value thresholding (Otsu, 1979), and a morphological
extract holes procedure combined with a global thresholding. All these
methods require, in contrast to the variational method, some pre- and
postprocessing steps described in Section 3 which handle in particular
the illumination changes in the z-direction. All four methods are
applied to four data sets from Pagenkemper et al. (2013) and to two
simulated data sets. Quantitative assessment of the segmented pores
shows that each method has its merits. The variational approach yields
smooth well-connected large pores. Non detection of smaller or
shallower pores can be an advantage in cases where the main bio-
pores network is of interest. Moreover, the smooth surface eases
subsequent skeletonization as artificial branches due to local surface
roughness are avoided. On the other hand, morphological correction of
global gray value fluctuations followed by a simple global gray value
thresholding according to Otsu (1979) very well recovers small pores
and biological infillings.

This paper is organized as follows: In Section 2, we introduce our
variational model for segmenting 3D root-induced bio-pores and
propose an efficient ADMM algorithm to find the global minimizer.
The segmentation methods used for the comparison are shortly
summarized in Section 3. In Section 4, we test our algorithm on four
3D image data sets from Pagenkemper et al. (2013) as well as on two
simulated bio-pore systems and compare it to the segmentation
algorithms introduced in the previous section. Conclusions are given
in Section 5.

2. Variational segmentation model

In this section, we introduce our model for tackling the root-
induced bio-pores segmentation problem and provide an algorithm to
solve it.

Let Ω N N N≔{1, …, } × {1, …, } × {1, …, }1 2 3 be the image grid. For

fixed z N∈ {1, …, }3 , let Ω x y z x y N N≔{( , , ): ( , ) ∈ {1, …, } × {1, …, }}z 1 2
be the horizontal (discrete) plane through z. By f Ω: → [0, 1] we denote
the given 3D CT gray-value image. Let ∇x be the forward difference
operator in x-direction (and similarly in y- and z-direction), i.e.,

f x y z f x y z f x y z∇ ( , , )≔ ( + 1, , ) − ( , , ),x

where we suppose mirror boundary conditions. For fixed z N∈ {1, …, }3
and given ε > 0 we define the edge set ε Ω( ) ∈z z by

ε x y Ω f x y z f x y z ε( )≔{( , ) ∈ : (∇ ( , , )) + (∇ ( , , )) > }.z z x y
2 2

In other words, ε( )z contains the voxels located around the boundaries
in Ωz. Then

∑ϕ z
ε

f x y z( )≔ 1
| ( )|

( , , )
z x y ε( , )∈ ( )z (1)

can be considered as average gray value of the voxels located around
the boundaries in Ωz. We define a threshold function τ depending on z
by

τ z c ϕ z( )≔ + ( ), (2)

where c is a chosen constant. To segment the root-induced bio-pores
we propose to find the minimizer u of the convex functional

∑ τ z f x y z u x y z μTV u μmin ( ( ) − ( , , )) ( , , ) + ( ), > 0,
u x y z Ω s x y z

∈[0,1] ( , , )∈ ( , , ) (3)

where u ∈ [0, 1] is meant voxelwise and

∑TV u u x y z u x y z u x y z( )≔ (∇ ( , , )) + (∇ ( , , )) + (∇ ( , , )) .
x y z Ω

x y z
( , , )∈

2 2 2

The first term of model (3) is a data term. If f x y z( , , ) is larger or equal
than the threshold τ z( ), then a large u x y z( , , ) ≈ 1 is not penalized.
Conversely, if f x y z( , , ) is below the threshold, then the data term
becomes small for u x y z( , , ) ≈ 0. The second term is the regularization
term which imposes smooth boundaries. In particular small image
details (artifacts) are neglected. This well-known regularizing term was
first introduced by Rudin et al. (1992) for image restoration tasks, The
data and the regularization terms are coupled by the regularization
parameter μ which steers the influence of the different terms to the
solution. Note that due to the attenuation values between bio-pores at
different z layers, a layer adapted value τ z( ) leads to better segmenta-
tion results.

There is a close relation of model (3) (for constant τ) to the Chan-
Vese segmentation model (Chan and Vese, 2001). For more details on
the connection between these models and its relation to perimeter
minimization we refer to Cai and Steidl (2013), Chambolle et al.
(2010).

Once the minimizer u Ω: → [0, 1] of (3) is found, we can apply a
thresholding procedure with a threshold ρ ∈ (0, 1) to find the two
desired segments of u. Fortunately it was proved in Nikolova et al.
(2006) that every threshold ρ ∈ (0, 1) can be used here.

We compute the minimizer of the convex functional (3) by the
ADMM (Boyd et al., 2011; Gabay, 1983). Alternatively one could apply
primal-dual first order methods as, e.g., those proposed in Chambolle
and Pock (2011). To present the algorithm in a sound mathematical
form, we reorder the 3D images g Ω: → into vectors g ∈ N ,
N N N N= 1 2 3 with components g g x y z≔ ( , , )x N y N N z+ ( −1)+ ( −1)1 1 2

and associate
to the forward difference operators ∇ , ∇ , ∇x y z the corresponding ma-
trices. For the concrete matrix representation we refer to Shafei and
Steidl (2012). Then problem (3) can be rewritten as

s u μ v v v v u w u wmin〈 , 〉 + ∥ + + ∥ subject to = ∇ , = , ∈ [0, 1],
u v w

x y z
, ,

2 2 2
1

where s u〈 , 〉 denotes the vector inner product,∥·∥1 the 1-norm of vectors
and
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