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a b s t r a c t

A mathematical form for the response of the stochastic finite element analysis of elliptical partial differ-
ential equations has been established through summing products of random scalars and random vectors.
The method is based upon the eigendecomposition of a system’s stiffness matrix. The computational
reduction is achieved by only summing the dominant terms and by approximating the random eigenval-
ues and the random eigenvectors. An error analysis has been conducted to investigate the effect of the
truncation and the approximations. Consequently, a novel error minimisation technique has been applied
through the Galerkin error minimisation approach. This has been implemented by utilising the orthogo-
nal nature of the random eigenvectors. The proposed method is used to solve three numerical examples:
the bending of a stochastic beam, the flow through a porous media with stochastic permeability and the
bending of a stochastic plate. The results obtained through the proposed random eigenfunction expan-
sion approach are compared with those obtained by using direct Monte Carlo Simulations and by using
polynomial chaos.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties can substantially affect the analysis of physical
structures. These uncertainties can occur in the properties of the
material, in the geometry or boundary conditions of the structure
or in the applied loads [1]. In order to represent the uncertainties
that occur in physical systems, a stochastic finite element method
[SFEM] can be applied. This method has been applied to numerous
problems including structural mechanics, fluid mechanics and heat
transfer problems. Both static [2,3] and dynamic [4,5] scenarios can
be represented through this method. In this work, a stochastic
elliptic partial differential equation is considered

�rn½aðx;xÞrnuðx;xÞ� ¼ pðxÞ x in D ð1Þ
with the associated Dirichlet condition

uðx;xÞ ¼ 0; x on D ð2Þ
In Eq. (1), u refers to the governing variable and r refers to the dif-
ferential operator (for a single dimensional problem r ¼ @

@x) and
n ¼ 1;2. The value of n would depend on the physical problem
under consideration. When dealing with a flow through a porous
media n would be equal to 1, and for the bending of a beam or a

plate n would be equal to 2. Both scenarios are discussed in this
paper. The spatial dimension under consideration is a bounded
domain D 2 Rd with piecewise Lipschitz boundary @D where d is
less than four. ðX;F ;DÞ is a probability space wherex 2 X is a sam-
ple point from the sampling space X;F is the complete r-algebra
over the subsets of X and P is the probability measure. In Eq. (1)
a : Rd �X ! R is a random field [6], which can be viewed as a set
of random variables indexed by x 2 Rd. We assume the random field
aðx;xÞ to be stationary, square integrable and non-negative. Fol-
lowing the discretization of Eq. (1) through the SFEM [7], this work
aims to produce a new solution approach through the use of ran-
dom eigenfuncation.

Direct Monte Carlo Simulation [MCS] has been widely used in
collaboration with the SFEM [8]. Although this is a relatively sim-
ple method, using a large number of realisations in conjunction
with high dimensional matrices can make this method computa-
tionally expensive. Numerous approaches have been proposed in
order to reduce the computational time. Multi-level Monte Carlo
is one such method where the variance of the Monte Carlo estima-
tor is reduced [9–11]. Other accelerating methods include cen-
troidal Voronoi tessellations [12,13], Latin hypercube sampling
[14] and quasi Monte Carlo [15,16]. In spite of the high computa-
tional cost linked with the direct MCS method, the error and the
computational cost associated with other methods are regularly
compared with the direct MCS method [17,18].
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Other methods are available to calculate functional statistics
which avoids the use of computationally expensive sampling
methods. One such approach is the perturbation method [19–21].
In such an approach, a Taylor series expansion is used to approxi-
mate the structural response. By assuming that the Taylor series
converges, the greater the number of terms kept in the series,
the higher the accuracy of the response [22]; however publications
using an order greater than two are uncommon due to high com-
putational cost. A considerable disadvantage is that the coefficients
of variation can’t exceed 15% of the mean value of the variable
under consideration [8]. Other approaches include Neumann
expansions [23–25] and linear algebra techniques [26]. The
stochastic Galerkin method is also popular [27,28]. This method
projects the response on an orthogonal basis that spans the
stochastic space.

Another class of methods which have been widely used are
spectral methods. This class originates from Wiener’s work [29]
where the homogeneous chaos method is initially defined. One
of the first applications of the chaos expansion for stochastic
finite elements is contained in [7]. If the random variables are
deemed Gaussian, a polynomial chaos approach can be consid-
ered. This approach has been widely used to model different
physical scenarios including structural [7], flow [30] and heat
transfer [31] problems. However, due to the high computational
cost of large systems, numerous reduction methods have been
suggested. These include [32] where a spectral decomposition of
the deterministic matrix is performed, and only the dominant
eigenvalues and eigenvectors retained. [33] have designed an
optimisation algorithm which makes the polynomial chaos
approximation computationally feasible. Other spectral methods
include the Wiener-Askey chaos expansion [34,35] and the
reduced basis method [36,37].

In Section 2 an overview of the spectral stochastic finite ele-
ment method is presented. The random eigenfunction approach
is proposed in Section 3, whilst Section 4 discusses different
ways of approximating random eigenvalues and eigenvectors.
Section 5 includes a novel error analysis which is followed by
a novel error minimising technique. The new approach is applied
to a stochastic Euler-Bernoulli beam, a flow through a stochastic
porous media and to the stochastic mechanics of a bending elas-
tic plate in Section 6 and the major conclusions are presented in
Section 7.

2. Discretization of the stochastic PDE

The random process aðx;xÞ seen in Eq. (1) can be expanded by a
generalised Fourier expansion known as the Karhunen-Loève
expansion

aðx;xÞ ¼ a0ðxÞ þ
X1
i¼1

ffiffiffiffi
~ki

q eniðxÞ ~/iðxÞ ð3Þ

Here a0 is the mean function and ~ki and ~/iðxÞ are the eigenvalues
and eigenvectors that satisfy the integral equationZ
D
Caðx1; x2Þ ~/jðx1Þdx1 ¼ ~kj ~/jðx2Þ 8 j ¼ 1;2; . . . ð4Þ

where Caðx1; x2Þ is the covariance function. The eniðxÞ seen in the
Karhunen-Loève expansion corresponds to random variables. If

the random process is deemed Gaussian, eniðxÞ would be standard
Gaussian random variables. For other types of random processes,
the random variables may possess other distribution types. After
truncating the series seen in Eq. (3) to the Mth term, the resulting
equation can be substituted into the original stochastic elliptical
partial differential equation. By applying appropriate boundary con-
ditions, the discretized equation takes the form

A0 þ
XM
i¼1

niðxÞAi

" #
uðxÞ ¼ f ð5Þ

where A0 2 Rn�n represents a deterministic, positive definite, sym-
metric matrix. Ai 2 Rn�n are general symmetric matrices for
i ¼ 1;2; . . .M;uðxÞ 2 Rn the response vector and f 2 Rn the deter-
ministic input force vector. The details of obtaining the discretized
equivalent of Eq. (1) have been omitted, but can be located in
numerous textbooks including [7]. The method proposed in this
paper is general in nature, therefore the random variables seen in
Eq. (5) are not restricted to any specific distribution.

3. Random eigenfunction expansion

3.1. Motivation behind the proposed approach

For simplicity, we express Eq. (5) as

AðxÞuðxÞ ¼ f ð6Þ

where the random matrix AðxÞ ¼ A0 þ
PM

i¼1niðxÞAi. The matrix
AðxÞ can be considered as a random stiffness matrix. As the system
under consideration is static, a mass matrix is not required. We will
consider problems where the value of M and the number of degrees
of freedom in a system are sufficiently large. For small values of M
computational reduction can be achieved. However when M is suf-
ficiently large the solution of Eq. (6) poses computational
challenges.

The exact solution to the set of stochastic linear equations given
above can be obtained through direct MCS. Convergence is guaran-
teed if the number of realisations is sufficiently large and all real-
isations of AðxÞ are positive definite. However, direct MCS can be
seen as a computationally expensive method [38], especially if
there is a large number of stochastic linear equations to be solved.
In order to avoid the use of direct MCS, alternative methods have
been explored. The response of Eq. (6) can be represented through
summing products of random scalars and deterministic vectors

uðxÞ ¼
XM1

j¼1

ajðxÞgj ð7Þ

where ajðxÞ 2 R and gj 2 Rn represent the random scalars and
deterministic vectors respectively. M1 corresponds to the number
of terms in the summation. Eq. (7) can be considered as the polyno-
mial chaos method

uðxÞ ¼
XP
k¼1

HkðnðxÞÞuk ð8Þ

where HkðnðxÞÞ represents the polynomial chaoses (corresponding
to the random scalars), and uk represents unknown deterministic
vectors that need to be determined. The value of P is determined
by a basic random variable M and by the order of the Polynomial
Chaos expansion p. In this instance, M corresponds to the order of
the Karhunen-Loève expansion. The value of P is determined by
the following expression

P ¼
Xp
j¼0

ðM þ j� 1Þ!
j!ðM � 1Þ! ð9Þ

It is evident that P increases rapidly when either the order of the
Karhunen-Loève expansion or the order of the Polynomial Chaos
expansion is increased. The unknown vector uk can be obtained
by using a Galerkin error minimising approach [7]. This approach
leads to a system of linear equations of size nP � nP. A possible
drawback to this approach is the high computational cost if either
n or P is large.
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