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a b s t r a c t

In this study, a robust unconditionally stable method for linear analysis of structures based on Bezier
curves and Bernstein polynomials is proposed. The Bezier curve is used as interpolation function and
Bernstein basis functions are applied for interpolation. The spectral radius, period elongation and ampli-
tude decay are investigated for stability analysis, numerical dispersion and dissipation of proposed
method, and results are compared with other methods that are the best in these properties. It is also
shown that the behavior of the proposed method in analysis of finite element system is effective and reli-
able. To show the robustness and features of proposed method, a challenging problem with a very stiff
and flexible response, a Howe truss under impact load, a frame under harmonic loading and a rectangular
domain in plane strain condition are considered, and derived results are compared with references solu-
tions and other results reported in the literature.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

According to the importance of numerical methods in solving
equations of structural dynamics, much research has been done
and different time integration methods for linear and nonlinear
analysis of structures such as Newmark-b [1], Wilson-h [2],
Houbolt [3], HHT-a [4], Bathe [5] and Park [6] are reported in the
literature. The stability and accuracy of time integration methods
have been discussed and studied in Refs. [7–9]. Integration algo-
rithms can be categorized into two main classes: explicit methods
[10–14] and implicit ones [1–5]. Explicit methods need less com-
putational effort than the implicit ones. This matter has been fully
investigated in Refs. [15,16].

In addition to the afore-mentioned classes, another classification
based on unconditionally stable algorithms or conditionally stable
ones can be pointed out. In conditionally stable algorithms [11–
13], it is necessary to apply the time step whose size is inversely
proportional to the highest frequency of the discrete systems. In
other words, it is needed to use a time step which is less than the
smallest period of the interested structure. In complex structural
models, this restriction is a difficulty, especially when the response
of lower mode is interested because much smaller time steps than
the ones needed for accuracy are required. In unconditionally stable
algorithms [17–22], choosing the size of time step is independent of

stability that leads to reducing the computational effort in the anal-
ysis. Another feature of these algorithms can be numerical dissipa-
tion for suppress spurious participation of the higher modes, while
an unconditionally stable algorithm may not have numerical dissi-
pation, for example the Newmarkmethod (trap. rule) [1]. Therefore,
unconditionally stable algorithms are preferred more than condi-
tionally stable ones (for more details, see Refs. [4,8]).

In addition to unconditionally stable feature, dependable and
effective behavior in solution of the equation of dynamic equilib-
rium of finite element system is one of the valuable properties of
numerical methods in linear analysis of structural dynamic prob-
lems. Although the finite element equations illustrate special prop-
erties, the time integration methods should have dependable
behavior in analysis of them, especially in exigent large deforma-
tion solutions [23–26]. One of the features that make appropriate
behavior in analysis of finite element systems is numerical dissipa-
tion. In fact, an unconditionally stable algorithm must somehow
acts in a way that in addition to dissipation spurious participation
of the highermodes, it should not affect the lowermodes too strong
that incurs a substantial loss of accuracy. Bathe and Noh [5] offered
an implicit time integration scheme with unconditional stability
that uses two sub-steps inside each time step that shows a good
performance in finite element systems.

In this study, the time integration approach is reconsidered by
proposing Bernstein polynomials and Bezier curve to approximate
displacement, velocity and acceleration fields in dynamic of struc-
tures. Our objective in this study is to present a robust, high-
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efficient, and unconditionally stable method in linear analysis
without the use of adjustable parameters and investigate its prop-
erties. The present method is based on Bezier curve as interpola-
tion function and Bernstein basis functions for interpolation. The
stability and accuracy of the present method are investigated with
the use of amplification matrix and its eigenvalues.

2. Bezier curve definition

A Bezier curve is a parametric curve that utilizes the Bernstein
polynomials as a basis function. A Bezier curve of degree n is
expressed by

PðtÞ ¼
Xn
i¼0

Jn;iðtÞbi ð1Þ

where bi are the Bezier points or control points and Jn;iðtÞ is the ith
nth-order Bernstein basis function, that n is the degree of the Bern-
stein basis function [27]. Jn;iðtÞ in interval ½tj; tjþ1� is represented by

Jn;iðtÞ ¼
n

i

� �
ðtjþ1 � tjÞ�nðtjþ1 � tÞn�iðt � tjÞi; t 2 ½tj; tjþ1�

n

i

� �
¼ n!

i!ðn� iÞ! ; 0! � 1; ð0Þ0 � 1; i ¼ 0; . . . ; n
ð2Þ

In this study, Bernstein basis functions are used for interpola-
tion and Bezier curves are employed as interpolation function.

3. Preparing Bernstein basis functions for interpolation

The first and second order derivatives of Bernstein basis func-
tions in interval ½tj; tjþ1� are required for the interpolation, which
are obtained as follows:

Jð1Þn;i ðtÞ ¼
n

i

� �
ðtjþ1 � tjÞ�nðiðtjþ1 � tÞn�iðt � tjÞi�1

� ðn� iÞðtjþ1 � tÞn�i�1ðt � tjÞiÞ; t 2 ½tj; tjþ1� ð3Þ

Jð2Þn;i ðtÞ ¼
n

i

� �
ðtjþ1 � tjÞ�nððn� i� 1Þðn� iÞðtjþ1 � tÞn�i�2ðt � tjÞi

� 2iðn� iÞðtjþ1 � tÞn�i�1ðt � tjÞi�1

þ iði� 1Þðtjþ1 � tÞn�iðt � tjÞi�2Þ; t 2 ½tj; tjþ1� ð4Þ
To prepare the Bernstein basis functions for the interpolation,

the intervals of Eqs. (2)–(4) had to be changed from ½tj; tjþ1� to ½0;1�.
To change the parameter from t 2 ½tj; tjþ1� to s 2 ½0;1�, s ¼ ðt�tjÞ

ðtjþ1�tjÞ
can be used, which gives t ¼ sðtjþ1 � tjÞ þ tj, therefore:

JðtÞ; t 2 ½tj; tjþ1� � Jðsðtjþ1 � tjÞ þ tjÞ; s 2 ½0;1� ð5Þ
If thedistancebetween tj until tjþ1 is considereda time step, then:

t ¼ sðDtÞ þ tj ð6Þ
By replacing Eq. (6) into Eqs. (2)–(4), Bernstein basis functions

are obtained for interpolation as below:

Jn;iðsÞ ¼
n

i

� �
ð1� sÞn�iðsÞi; s 2 ½0;1� ð7Þ

Jð1Þn;i ðsÞ ¼
1
Dt

n

i

� �
ðið1� sÞn�iðsÞi�1 � ðn� iÞð1� sÞn�i�1ðsÞiÞ; s 2 ½0;1�

ð8Þ

Jð2Þn;i ðsÞ ¼
1

�t2
n

i

� �
ððn� i� 1Þðn� iÞð1� sÞn�i�2ðsÞi

� 2iðn� iÞð1� sÞn�i�1ðsÞi�1

þ iði� 1Þð1� sÞn�iðsÞi�2Þ; s 2 ½0;1� ð9Þ

4. Interpolation method based on the Bezier curve of degree 5

A set of basis functions of degree 5 as well as their first and sec-
ond order derivatives that are used for interpolation, are shown in
Figs. 1–3.

Fig. 1. The prepared Bernstein basis functions.

Fig. 2. The prepared first-order derivative Bernstein basis functions.

Fig. 3. The prepared second-order derivative Bernstein basis functions.
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