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a b s t r a c t

Aging of structural performance and significant external loads may impair structural safety and service-
ability and cause potential economic losses. In the presence of uncertainties associated with both resis-
tance deterioration and external loads, structural safety shall be estimated quantitatively under a
probability-based framework. A stochastic load process is often auto-correlated on the temporal scale,
with correlations arising from both the occurrence times and intensities. Moreover, a deterioration pro-
cess is physically dependent on the load magnitudes. This paper investigates the impacts of load tempo-
ral correlation and deterioration-load dependency on time-variant structural reliability. The load
occurrence process is modeled as a Poisson point process with correlated separation time between
two load events. The correlation between the intensities of load events is described by the multi-
variate Gaussian copula function. The resistance aging process is considered to be a combination of both
gradual and shock deteriorations. Four candidate copula functions, namely Gaussian, Clayton, Gumbel
and Frank, are considered to model the dependency of shock deterioration on load intensity. Two types
of failure mechanisms are considered: the first is due to the load effect exceeding the resistance, and the
second occurs when the cumulative damage within the considered service period reaches the permissible
level. A simulation-based method is developed to estimate structural reliability considering the two fail-
ure modes. Illustrative examples are presented to demonstrate the applicability of the proposed method.
Parametric studies are conducted to investigate the impacts of temporal correlation in loads and
deterioration-load dependency on structural failure probability.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The performance of civil structures such as strength, stiffness
and stability may deteriorate due to severe operating or environ-
mental conditions in service, resulting in a potential decrease of
structural safety and serviceability below the baseline as assumed
for new ones. In an attempt to achieve a better understanding of
the service conditions of aging structures, it is of significant impor-
tance to assess the structural safety and remaining service-life
under a probability-based framework, taking into account the
uncertainties associated with both the resistance deterioration
and load process [1–4]. Structural reliability is a widely-used indi-
cator of structural ability to fulfill the safety and serviceability
requirements during a specific time period of interest, and pro-
vides a rational criterion to help make decisions regarding the
maintenance optimizations of structures [5–8].

Significant studies have been conducted in recent decades
regarding the time-variant reliability and service-life assessment
of aging structures [9–16]. Mori and Ellingwood [9] proposed a
closed-form solution for structural time-dependent reliability
analysis considering a stationary load process. Later studies used
this method to assess the remaining service life of aging structures
[6,7,11]. Li et al. [4] improved the work by Mori and Ellingwood [9]
and developed a method for reliability analysis of aging structures,
which enables the non-stationarity in loads [17–19] to be consid-
ered. However, many previous works used a fully-correlated dete-
rioration model, which cannot not fully address the stochastic
characteristics associated with the deterioration process. Some
improved deterioration models have later been proposed [20–
27], where the monotonicity (non-increasing) and auto-
correlation of the deterioration process are taken into account.
Yet limited attention has been paid to the modeling of physical
dependence of deterioration process on load intensities. This is
particularly relevant when only incomplete statistical information
is available. Furthermore, existing works have, for the most part,
considered the load process as independent. Practically, temporal
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correlation often exists between the load intensities and/or in the
load occurrence due to common causes. For instance, for the trop-
ical cyclone winds, at a specific site of interest, inter-correlation
between successive cyclone events may be posed by common
underlying climatological causes [28–30]. The observation of
multi-year and multidecadal oscillations in cyclones also suggests
such a temporal correlation [31]. Ellingwood and Lee [28] quanti-
tatively measured the autocorrelation in wind load process, where
a time series model [32] was used. Li et al. [29] andWang et al. [30]
preliminarily investigated the impact of temporal correlation in
cyclone process on cumulative community damage. However, to-
date methods for structural reliability analysis have yet to incorpo-
rate the temporal correlation in external load process.

This paper assesses the time-dependent reliability of aging
structures in the presence of temporal correlation in loads and
deterioration-load dependency. The correlations arising from both
the load occurrence times and load intensities are taken into
account. The dependency of resistance deterioration on load inten-
sity is described by a copula function. A simulation-based method
is developed for structural time-dependent reliability analysis. The
proposed method is demonstrated through a time-dependent reli-
ability assessment problem. The impacts of load temporal correla-
tion and deterioration-load dependency on structural safety are
investigated parametrically.

2. Modeling the temporal correlation in loads

Both the occurrence and intensity of significant loads are
unavoidably associated with uncertainties on the time scale. As a
result, they should be modeled using a probabilistic method. The
mathematical modeling of a correlated load process is discussed
in this section.

2.1. Temporal correlation in load occurrence

In practice, a stochastic random process such as the Poisson pro-
cess is used to account for the randomness in load occurrence times
[4,9,33]. For a reference period of T years, the loads can be repre-
sented by a sequence of randomly occurring pulses with random
intensities, S1; S2; . . . SN , at times t1; t2; . . . tN , respectively. The
sequence of time interval between two subsequent events,
D ¼ fD1;D2; . . .DNg, can be used to define a Poisson process, where
Di ¼ ti � ti�1 for i ¼ 1;2; . . .N and t0 ¼ 0. It is an independent pro-
cess and the cumulative density function (CDF) of Di; FDi

, is given by

FDi
ðtÞ ¼ 1� exp �

Z t

0
kðti�1 þ sÞds

� �
; t P 0: ð1Þ

where kðsÞ is the mean occurrence rate of the load at time s (i.e., on
average kðsÞ load event(s) occur during unit time corresponding to
time s). Eq. (1) simply becomes FDi

ðtÞ ¼ 1� expð�ktÞ for the case of
a stationary process.

Now we consider the temporal correlation in load occurrence.
The time interval sequence D is modeled as a correlated Markov
chain, that is, Diþ1 is directly correlated with Di only (see, e.g.,
[34] for details on Markov chain process). Let .i denote the linear
correlation coefficient between Di and Diþ1, with which the corre-
lation coefficient between Di and Dj is given by

qij ¼

Yi�1

k¼j

.k; i > j

1; i ¼ j

qji; i < j

8>>>><
>>>>:

ð2Þ

Specifically, if .i � . for 8i;qij in Eq. (2) becomes .i�j if i > j. The
number of loads within time interval ð0; T�;NðTÞ, is given by

NðTÞ ¼ max k :
Xk
j¼0

Dj 6 T

( )
ð3Þ

where D0 ¼ 0. The validity of this correlated load process is guaran-
teed by the convergence of limT!1

NðTÞ
T , as discussed in Appendix A.

The Nataf transformation method [35–37] can be used to generate a
sample sequence of D, provided the marginal distribution of each Di

and the correlation matrix q ¼ ½qij� are known. The basic idea is to
first transform D into a correlated standard normal distributed vec-
tor Y ¼ fY1; Y2; . . . YNg with a correlation matrix of q0 ¼ ½q0

ij�, and
then transform Y into an independent standard normal distributed
vector Z ¼ fZ1; Z2; . . . ZNg. It can be shown that

Y ¼ L � Z ð4Þ

where L ¼ ½lij� is a lower triangle matrix satisfying L � LT ¼ q0.
A key step in the Nataf transformation method is to find the cor-

relation matrix q0 provided q. Discussions on the relationship
between qij and q0

ij can be found in literature (see, e.g., [35,36]).
For the case of a stationary process, each Di is identically dis-
tributed and follows an exponential distribution. The mean value
and variance of Di are 1=k and 1=k2 respectively, yielding a constant
COV (coefficient of variation) of 1. With this, the relationship
between qij and q0

ij can be found numerically as

q0
ij

qij
¼ �0:0553q3

ij þ 0:152q2
ij � 0:3252qij þ 1:2285: ð5Þ

Note that expanding Eq. (4) gives

D1 ¼ F�1
D1
½Uðl11 � Z1Þ�

D2 ¼ F�1
D2
½Uðl21 � Z1 þ l22 � Z2Þ�

..

.

DN ¼ F�1
DN
½UðlN1 � Z1 þ lN2 � Z2 þ . . .þ lNN � ZNÞ�

ð6Þ

where

lii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

ii �
Xi�1

k¼1
l2ik

r
ð7Þ

and

lij ¼ 1
lii

q0
ij �

Xi�1

k¼1

likljk

 !
; j P iþ 1: ð8Þ

With this, the procedure of sampling a stationary and correlated
sequence of D; fd1; d2; . . . dNg, by means of the Nataf transformation
method is summarized as follows:

(1) Determine q0 with Eq. (5), and solve L with Eqs. (7) and (8).
(2) Generate N independent standard normal distributed sam-

ples z1; z2; . . . zN .

(3) Set di ¼ F�1
Di

U
Pi

j¼1lijzj
� �h i

for i ¼ 1;2; . . .N.

For the case of a non-stationary correlated process, however,
the COV of Di varies with i since it depends on ti�1. This fact, unfor-
tunately, indicates that one cannot construct the correlation matrix
q0 prior to generating a sample of D. In such a case, an iteration-
based method is proposed to sample D.

Note that Eqs. (7) and (8) demonstrate that the elements in L; lij
(i P j), are uniquely determined once the principal sub-matrix of
q0;q0½i; i�, is known (see [38] for the definition of principal
sub-matrix). With this, one can generate a sample sequence of D
as follows:
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