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a b s t r a c t

We developed a new multi-objective and multi-level optimization method to design an active vibration
isolation system. Both the layout of the continuum (i.e. the supporting structure) and the loci of the iso-
lators are designed using topology optimization technique in a unified formulation for the first time. The
static, dynamic and vibration-isolation characteristics are taken into account simultaneously in the pre-
sent model. Due to their different roles in the system it may be appropriate and advantageous to treat the
design of the continuum layout and isolator loci as different sub-problems with different objectives in
separate stages. The multi-level optimization technique, where the optimization of the supporting struc-
ture and the isolator loci are incorporated into a closed-loop, is proposed and implemented so that the
interactions between these two sub-problems can be fully taken into account. Numerical results demon-
strate the validity of the proposed design cycle. Comparisons show that the overall static, dynamic and
vibration-isolation performance of the optimized system outperforms the ones designed by traditional
methods.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization of structures considering dynamic char-
acteristics has drawn the interests of many researchers since
1990s. Generally speaking, the dynamics related topology opti-
mization is much more intricate than the one concerning static
characteristics only. Some typical obstacles of the former include
the so-called localized modes [1], the possible non-
differentiability of the eigenfrequencies [2–4] and the higher com-
putational cost when compared to static analysis [5,6].

Basically, existing literatures on the dynamics related topology
optimization can be categorized into three groups:

� In the first group, the eigenfrequencies of structures are the
topic, either the eigenfrequencies of some fixed orders [2,4,7–
10] or the eigenfrequency gap [3,11,12] is taken as the objective
function. The goal is to maximize the eigenfrequency or the
eigenfrequency gap with limited material usage.

� In the second group, the steady-state frequency response of
structures is of interests and the goal is to minimize the struc-
tural response under the harmonic excitation of some fixed fre-

quencies or among some frequency ranges [13]. The objective
function may be taken as the dynamic compliance [14,15], the
(weighted) amplitude of the displacements [16–18] of some
specified nodes, etc.

� In the third group, the transient response of structures is con-
cerned and the aim is to minimize the structural response at
some fixed time or in a time range under transient time-
domain excitation [19–22]. For an insight into this group, we
recommend the review paper [23] and the references therein.

In the simplest vibration isolation theory of single-dof system,
the active vibration isolation system is composed of the vibration
source (the machines), the isolators and the ground. While in engi-
neering practice the supporting structure is often included in the
system to link different machines and to facilitate the installation
and maintenance.

As shown in Fig. 1, in this paper we focus on the design of an
active vibration isolation system where both the dynamic and
the static characteristics of the system, as well as the vibration iso-
lation performance should be considered simultaneously.

The continuum (i.e. the supporting structure) will be designed
using traditional density-based topology optimization method.
When optimizing the loci of the isolators, the intuitionistic idea
of taking the coordinates of the isolators as parameters and doing
parametric optimization to find the best coordinates would be very
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inefficient. FEA programs in solid mechanics are based on Lagran-
gian mesh, so modifying the coordinates of the isolators would
directly lead to the time-consuming remesh process. Another idea
is to choose the best loci among some predefined locations. But
this requires to solve the 0–1 programming problem together with
the topology optimization of the continuum so as to be inefficient
as well.

In this paper, we presents the topological optimization model in
which both the layout of the continuum and the loci of the isola-
tors are described by continuous topological variables. This way,
the design of the loci of the isolators can be accomplished by solv-
ing the normal optimization problem with only continuous
variables.

The roles of the supporting structure and the isolators are quite
different, so they should be designed under different principles:

� The requirements for the supporting structure is that it should
have enough static and dynamic stiffness. So when designing
the supporting structure, the objectives may be chosen as the
dynamic and static compliance. In some industrial applications,
such as the isolation systems in the engine room and motor
room of a ship [24–26], the design of the supporting structure
is a very important topic.

� The isolators are the backbone to improve the vibration isola-
tion performance and to ensure the safety of the machine(s).
So when designing the isolators, the target should be to mini-
mize the forces transmitted into the ground and to ensure the
safety of the machines as well. Here the safety of the machines
can be measured by the displacements at the machines [27].

Considering the essential difference between the isolators
(which are modelled as discrete spring elements) and the support-
ing structure (which is modelled as continuum shell elements), it is
both appropriate and advantageous to decompose the above prin-
ciples and to design the supporting structure and the isolators in
separate stages by using the strategy of divide-and-conquer. How-
ever, the abovementioned principles are actually mutually affected
by each other. The change in the topology of the structure will
surely influence the optimal locations of the isolators, and vice
versa. So the design of the supporting structure and the isolators
should be included in a closed-loop to fully take into account the
interactions between each other. This way, the whole system
may be designed by the multi-level optimization method. Consid-
ering the interactions between different parts is indeed the core of
the divide-and-conquer strategy.

The techniques of decomposition and multi-level optimization
have been discussed extensively in the literature. Readers inter-
ested in this topic can refer to the Chapter 11 of Haftka’s mono-
graph [28] and the references therein. Optimizing the loci of the

isolators together with the topology of continuum structures in
an active vibration isolation system seems to be new in the
research area of topology optimization and has not been investi-
gated by others. But optimizing the supports in truss structures
[29–33] and continuum structures [34,35] can be found in the
literature.

The remaining parts are arranged as follows. In Section 2 the
basic FEA procedure of the steady-state dynamics including the
SIMP interpolation scheme is presented. In Section 3 the objective
functions for designing the supporting structure and the isolators
are formulated based on the FEA procedure shown in Section 2.
Using these objective functions, in Section 4 the supporting struc-
ture and the isolators are designed successively following some
specific work flow. In Section 5 some numerical results are given,
then the validity of the proposed methods and the superiority of
the optimized system are verified. Some discussions on the
obtained optimized design are given in Section 6. The conclusions
are made in Section 7. In Appendix A the sensitivity information of
the objective functions formulated in Section 3 are presented.

2. Basic FEA procedure and SIMP interpolation

The motion equation of the structural dynamics is given by

M€uþ Ku ¼ f ð1Þ
where M;K 2 Rndof�ndof are the global mass matrix and stiffness
matrix, respectively; f ;u 2 Rndof are the global load and displace-
ment vector, respectively; R is the real subspace; ndof is the number
of dofs in the FEA model.

The global stiffness matrix is composed of the stiffness matrix of
continuum elements (i.e. the shell elements) and the spring ele-
ments, while the global mass matrix is composed of the mass
matrix of continuum elements and the point-mass elements:

K ¼Ksh þ Ksp ð2aÞ
M ¼Msh þMpt ð2bÞ
where sh, sp and pt are short for shell elements, spring elements and

point-mass elements, respectively. Further Ksh;Msh;Ksp and Mpt

come from the finite elements assembly:

Ksh ¼
Xnsh
i¼1

Ksh;e
i ð3aÞ

Msh ¼
Xnsh
i¼1

Msh;e
i ð3bÞ

Ksp ¼
Xnsp
j¼1

Ksp;e
j ð3cÞ

Mpt ¼
Xnpt
k¼1

Mpt;e
k ð3dÞ

where nsh;nsp;npt are the number of shell elements, spring elements

and point-mass elements, respectively; Ksh;e
i andMsh;e

i are the actual
stiffness matrix and mass matrix for i-th shell element, they are
related to the nominal stiffness and mass matrix through the
famous SIMP interpolation scheme [15,16]:

Ksh;e
i ¼x3i K

sh;e
i ð4aÞ

Msh;e
i ¼x3i M

sh;e
i ð4bÞ

where xi 2 ½0;1� is the topological variable for i-th shell element.
Similarly, Ksp;e

j is the actual stiffness matrix for j-th spring ele-

ment, Mpt;e
k is the mass matrix for k-th point-mass element. Ksp;e

j

is related to the nominal elemental stiffness matrix through:

Fig. 1. An active vibration isolation system adapted from engineering practice. The
orange one is the supporting structure. The strong oliver ones (generators) are the
machines and the vibration source in this system. The black ones are the rubber
isolators. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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