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a b s t r a c t

In this paper, a novel sub-step composite implicit time integration scheme is presented for solving the
problems in structural dynamics. The proposed scheme possesses desirable stability and accuracy.
With appropriate algorithmic parameter value, the scheme can attain controllable amplitude decay
and period elongation. Effectiveness of the proposed scheme is tested in some example solutions by com-
paring with other well-known implicit schemes. Theoretical analysis and numerical simulations demon-
strate that the proposed scheme possesses high computation efficiency as well as desirable numerical
dissipation characteristics.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A large amount of research has been conducted to explore effec-
tive time integration schemes for linear and nonlinear analysis of
structures [1–9]. For explicit methods, the central difference
method is commonly used. As for implicit methods, there are a
large number of methods presented. Implicit methods are pre-
ferred choice for some specific problems due to its advantages over
explicit methods. The trapezoidal rule and Generalized-a method
are most commonly used implicit methods [9,10].

For linear analysis, the trapezoidal rule is unconditionally
stable, second-order accurate, and shows no amplitude decay
(AD) and acceptable period elongation (PE), however, this scheme
is unstable in nonlinear analysis where conditions of momentum
and energy conservation are not satisfied [9]. Another drawback
of the trapezoidal rule is in that it gives no numerical dissipation
which is significant for finite element analysis of structures. One
approach to overcome this drawback is to introduce some damping
by introducing some parameters into a time integration method,
and the Generalized-a method is the most representative case
[10], however, to acquire acceptable accuracy, its parameters need
to be cautiously selected according to the characteristics of the
problem solved. Bathe and Baig [11] presented a composite impli-
cit time integration procedure which is found to be effective where

the trapezoidal rule fails to produce a stable solution. This compos-
ite implicit scheme is then successfully applied for certain nonlin-
ear dynamic analysis [3]. Recently, to improve numerical damping
characteristics, we proposed a new family of time integration
methods where the selection of parameters is flexible [12,13],
however, new methods entails a large amount of matrix calcula-
tion, which hinders its practical application.

In this paper, inspired by the work of Bathe and Baig [11], a new
implicit scheme is presented with the introduction of one free
parameter. In the three sub-step composite scheme by Bathe and
Baig [11], the trapezoidal rule is used for the first and second
sub-steps, and the Houbolt method is used for the third sub-step.
As for the proposed scheme, the trapezoidal rule and the Houbolt
method are also used for the first and third sub-steps respectively,
but, for the second sub-step, the Euler backward method is
adopted. New scheme is expected to be desirable in calculation
accuracy and numerical dissipation characteristics. In the follow-
ing, we first give the basic equations of the scheme, then present
some basic properties of the time integration method, finally,
solved some representative examples to confirm some important
and valuable properties of the scheme.

2. The time integration scheme

2.1. Standard formulations

Considering linear analysis, the governing finite element
equation to be solved are
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M€Uþ D _Uþ KU ¼ R ð1Þ
where U is the vector of nodal displacements (including rotations).
_U and €U are, respectively, the first and second derivatives of U in
terms of time t. M, D and K are mass, damping and stiffness
matrices, respectively. R is the applied loads vector. For nonlinear
problems, D and K can be obtained by D ¼ ›Rd

› _U
and K ¼ ›Rs

›U ,
where Rd and Rs are the nodal damping force and the
elastic force corresponding to the element internal stresses,
respectively.

In this proposed scheme, the complete time step Dt is divided
into three different sub-steps as pDt, ð1� 2pÞDt and pDt, where
0 < p < 0:5. For the first sub-step the trapezoidal rule is employed,
for the second sub-step 3-point Euler backward method is adopted
and the Houbolt method is used for the third sub-step. For any
MDOF system [11], they are, respectively, formulated as

tþpDt _U ¼ t _Uþ 1
2
pDtðt €Uþ tþpDt €UÞ ð2Þ

tþpDtU ¼ tUþ 1
2
pDtðt _Uþ tþpDt _UÞ ð3Þ

ðDtÞ � tþð1�pÞDt _U ¼ c1tUþ c2tþpDtUþ c3tþð1�pÞDtU ð4Þ

ðDtÞ � tþð1�pÞDt €U ¼ c1t _Uþ c2tþpDt _Uþ c3tþð1�pÞDt _U ð5Þ

ðDtÞ � tþDt _U ¼ d1
tUþ d2

tþpDtUþ d3
tþð1�pÞDtUþ d4

tþDtU ð6Þ

ðDtÞ � tþDt €U ¼ d1
t _Uþ d2

tþpDt _Uþ d3
tþð1�pÞDt _Uþ d4

tþDt _U ð7Þ
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Fig. 1. Spectral radii qðAÞ of the proposed method, case n ¼ 0, for different values of p.
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Fig. 2. Spectral radii of approximation operators, case n ¼ 0, for various schemes.
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Fig. 3. Percentage Amplitude Decay (AD) of the proposed scheme for various p.
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