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a b s t r a c t 

This paper describes a simple procedure to increase the accuracy of the boundary element method (BEM) results 

in Poisson’s problems using coarse meshes. Usually, BEM values at internal points are obtained by reusing the 

boundary integral equation, after having calculated all variables at the nodal points on the boundary. Accuracy 

in results of these internal points is superior to that obtained at boundary nodes and the reason for that can be 

assigned to a new minimization of residuals performed. Therefore, this idea can be used to improve BEM results 

by means of choosing new source points on the boundary at positions different from those of the original nodes. 

Tests carried out with problems governed by Laplace’s equation and Navier’s equation were successful; thus, this 

procedure is now applied to Poisson’s problems that allow a more comprehensive evaluation of the performance 

of proposed technique. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Numerical results show that the BEM accuracy for internal points 

is better than that for boundary nodal points. This performance can be 

justified considering mathematical fundamentals of the weighted resid- 

ual method (WRM) [1] , from which the main discrete numerical meth- 

ods, such as the finite element method [2] , the finite difference method 

[3] and the BEM can be derived and also interpreted. Since values of 

internal variables are calculated by reusing the boundary integral equa- 

tion, this procedure can be understood as equivalent to a new residuals 

minimization. The main difference is that the new weighted residual 

integral equation contains all nodal variables previously calculated. 

Thus, the idea of recursive procedure is simply to apply again the 

boundary integral sentence putting the source points on the boundary 

in different positions from those of the original source points. Naturally, 

the procedure is not applied at points at which the basic variables are 

prescribed. The expectancy is to achieve results with better accuracy, as 

occurs for internal points. 

Indeed, the recursive procedure has already been successfully ap- 

plied to Laplace’s problems [4] and also in linear elastic problems, gov- 

erned by the Navier’s equation [5] . Interesting results were obtained in 

these applications, particularly for derivatives of basic variable, such as 

flux in potential problems and tractions in elasticity. In this work, the 
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technique is applied to Poisson’s problems, in which a much broader 

number of examples can be solved, allowing better assessment of the 

technique in scalar problems. Recursive results are compared with direct 

nodal results, that is, results obtained by solution of standard BEM ma- 

trix equation system; both results are compared with reliable solutions, 

being analytical or discrete, taken as reference for better evaluation. 

It is important to highlight one aspect in Poisson’s problems which 

must be carefully considered: the mathematical treatment of the integral 

related to the source term. Avoiding errors relating to approximation of 

domain integral, problems that are adequately solved by the Galerkin 

tensor technique [6] were chosen so that errors related to approximation 

of domain integrals were avoided. Numerical experiences using the dual 

reciprocity boundary element method [7] were not successful, probably 

due to the interference of the radial basis interpolation functions [8,9] . 

2. Poisson’s equation 

Consider a two-dimensional homogeneous isotropic body subjected 

to a thermal or mechanical field at a steady state and that there are 

sources, sinks or external actions that act directly in the field. Denoting 

by u o ( X ) the potential scalar variable which represents the field, the dif- 

ferential equation associated with this problem, the Poisson’s equation, 
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in indicial notation is given by: 

𝑢 𝑜 ( 𝑋 ) , 𝑖𝑖 = 𝑝 ( 𝑋 ) (1) 

The essential and natural boundary conditions are defined respec- 

tively by the following equations: 

𝑢 𝑜 ( 𝑋) = �̄� ( 𝑋) on Γ𝑢 ; and 𝑢 𝑜 , 𝑖 𝑛 𝑖 ( 𝑋) = 𝑞 ( 𝑋) on Γ𝑞 (2) 

In Eq. (2 ) n i is the external unitary normal vector on the boundary 

and Γ = Γu + Γq . 

3. Weighted residuals boundary integral equation 

Considering the potential u ( X ) and flux q ( X ) as approximate solutions 

for the exact values, the WRM associated with the Poisson equation is 

given by the following integral equation [10] : 

∫Γ𝑢 [ ̄𝑢 ( 𝑋) − 𝑢 ( 𝑋)] 𝑞 ∗ ( 𝜉; 𝑋) 𝑑Γ+ ∫Γ𝑞 [ 𝑞( 𝑋) − 𝑞 ( 𝑋)] 𝑢 ∗ ( 𝜉; 𝑋) 𝑑Γ

= ∫Ω[ 𝑝 ( 𝑋) − 𝑢 , 𝑖𝑖 ( 𝑋) ] 𝑢 ∗ ( 𝜉; 𝑋 ) 𝑑 Ω (3) 

In Eq. (3 ), weighting functions u ∗ ( 𝜉, X ) are the fundamental solution 

of the Poisson problem and q ∗ ( 𝜉, X ) is its normal derivative [1,6] , whose 

analytical formulas are well-known. Eq. (3 ) includes minimization of all 

types of residuals that may appear on the numerical solution, either in 

the field Ω( X ) or on the Γu ( X ) and Γq ( X ) borders. 

As the fundamental solution and its normal derivatives are associated 

to a correlate physical problem, considering the mathematical principles 

of the WRM, an efficient functional space is constructed, in order to 

minimize numerical residuals accurately. 

Well known mathematical procedures [6] lead to an integral equa- 

tion, which is more suitable for application of classic BEM discretization 

procedure: 

𝑐 ( 𝜉) 𝑢 ( 𝜉) + ∫Γ 𝑢 ( 𝑋 ) 𝑞 ∗ ( 𝜉; 𝑋 ) 𝑑 Γ− ∫Γ 𝑞( 𝑋 ) 𝑢 ∗ ( 𝜉; 𝑋 ) 𝑑 Γ

= ∫Ω 𝑝 ( 𝑋) 𝑢 ∗ ( 𝜉; 𝑋 ) 𝑑 Ω (4) 

The coefficient c ( 𝜉) depends on the position of the source point 𝜉

with respect to the physical domain Ω( X ). For problems in which the 

domain actions are harmonic, the technique that uses the Galerkin ten- 

sor G 

∗ ( 𝜉;X ) is advantageous. Thus, except for discretization errors, the 

right side of Eq. (4) is integrated exactly, without residuals minimization 

with respect the function p ( X ). In this case, one has: 

∫Ω 𝑝 ( 𝑋 ) 𝑢 ∗ ( 𝜉; 𝑋 ) 𝑑 Ω = ∫Ω 𝑝 ( 𝑋) 𝐺 

∗ , 

𝑖𝑖 ( 𝜉; 𝑋 ) 𝑑 Ω = ∫Γ 𝑝 ( 𝑋) 𝐺 

∗ , 

𝑖 ( 𝜉; 𝑋 ) 𝑛 𝑖 ( 𝑋 ) 𝑑 Γ − ∫Γ 𝑝 , 𝑖 ( 𝑋) 𝑛 𝑖 ( 𝑋 ) 𝐺 

∗ ( 𝜉; 𝑋 ) 𝑑 Γ (5) 

The following functions appear in the kernels of the right hand side 

of Eq. (5) : 

𝐺 

∗ ( 𝜉; 𝑋 ) = 

1 
8π
𝑟 2 ( 1 − ln 𝑟 ) (6) 

𝐺 

∗ 
,𝑖 
( 𝜉; 𝑋 ) 𝑛 𝑖 ( 𝑋) = 

1 
8π

[
𝑟 + 2ln 1 

𝑟 

]
𝜕𝑟 

𝜕 𝑥 𝑖 
(7) 

4. Recursive procedure 

The idea of the recursive procedure is to reapply the integral equa- 

tion after the solution of the standard BEM system, using new source 

points. It is well known that the BEM collocation usually considers 

boundary nodal points as source points. Thus, residuals are null at 

boundary nodes; however, in such points the error is not null, not even 

Fig. 1. Rod submitted to constant domain force. 

minimum. Thus, the aim here is to evaluate the capability of the re- 

cursive procedure to make residual minimization more effective. This is 

not similar to the mesh refinement strategy, in which the reduction of 

numerical error is due to the addition of a large number of collocation 

points. 

The recursive boundary integral equation procedure is closely re- 

lated to the collocation BEM adaptive techniques, since in the absence 

of a better criterion of error estimation, a new integral equation is gen- 

erated for new source points. However, despite the similarities, there 

is a conceptual difference. Neglecting the sense of error minimization, 

the adaptive techniques only search a factor to indicate regions more 

suitable to the mesh refinement. Differently, the recursive procedure 

indicates that when the integral residual sentence is applied again a re- 

duction of the errors at the new collocation points can be achieved. 

Regarding operational features, all nodal values of potential and nor- 

mal derivatives are available, such as occurs in calculation at internal 

points. There is no restriction to put the new source points on the bound- 

ary again. It must be avoided to choose original boundary nodes for 

redundancy. It is also strategic to choose the new source points equidis- 

tant of the boundary nodes. Thus, using linear elements as is done in 

this work, recursive points are centered on the boundary elements and 

the discretized form of boundary equations are relatively simple. 

Considering the letter “e ” referring to the boundary element; the 

known nodal variables being U 

e , Q 

e , P e and Z e ; the index k referring 

to the nodal points and 𝜙( X ) being the shape function, potential value 

at a recursive point 𝜉r is given by: 

( 0 . 5 ) 𝑢 ( 𝝃𝑟 ) = 

𝑁 ∑
𝑒 =1 

𝑄 

𝑒 
𝑘 ∫Γ𝑒 𝜙𝑘 ( 𝑿 ) 𝑢 ∗ ( 𝝃𝑟 ; 𝑿 ) 𝑑 Γ𝑒 − 

𝑁 ∑
𝑒 =1 

𝑈 

𝑒 
𝑘 ∫Γ𝑒 𝜙𝑘 ( 𝑿 ) 𝑞 ∗ ( 𝝃𝑟 ; 𝑿 ) 𝑑 Γ𝑒 

+ 

𝑁 ∑
𝑒 =1 

𝑃 𝑒 
𝑘 ∫Γ𝑒 𝜙𝑘 ( 𝑿 ) 𝐺 

∗ 
,𝑖 
( 𝝃𝑟 ; 𝑿 ) 𝑛 𝑖 ( 𝑿 ) 𝑑 Γ𝑒 

− 

𝑁 ∑
𝑒 =1 

𝑍 

𝑒 
𝑘 ∫Γ𝑒 𝜙𝑘 ( 𝑿 ) 𝐺 

∗ ( 𝝃𝑟 ; 𝑿 ) 𝑑 Γ𝑒 (8) 

Eq. (8 ) was taken, for sake of simplicity: 

𝑝 ,𝑖 ( 𝑿 ) 𝑛 𝑖 ( 𝑿 ) = 

𝜕𝑝 

𝜕 𝑥 1 

𝜕 𝑥 1 
𝜕𝑛 

+ 

𝜕𝑝 

𝜕 𝑥 2 

𝜕 𝑥 2 
𝜕𝑛 

= 𝑧 1 𝑛 1 + 𝑧 2 𝑛 2 = 𝑍 (9) 

The calculation of normal derivative of potential requires special 

attention, since one of the kernels of the integral recursive equation 

presents a hyper-singular behavior [11,12] . However, using the recur- 

sive procedure the new source points are located between nodal points, 

thus defined along a smooth curve, which greatly simplifies the treat- 

ment of these integrals. Then, the boundary integral equation for normal 

105 



Download English Version:

https://daneshyari.com/en/article/4965919

Download Persian Version:

https://daneshyari.com/article/4965919

Daneshyari.com

https://daneshyari.com/en/article/4965919
https://daneshyari.com/article/4965919
https://daneshyari.com

