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a b s t r a c t 

The Hausdorff derivative partial differential equations have in recent years been found to be capable of describing 
complex mechanics and physics behaviors such as anomalous diffusion, creep and relaxation in fractal media. But 
most research is concerned with time Hausdorff derivative models, and little has been reported on the numerical 
solution of spatial Hausdorff derivative partial differential equations. In this study, we derive the fundamental 
solutions of the Hausdorff derivative Laplace, Helmholtz, modified Hemholtz, and convection-diffusion equations 
via a non-Euclidean metric, called the Hausdorff fractal distance. And then the singular boundary method is used 
to numerically simulate the steady heat transfer governed by the Hausdorff Laplace equation in comparison with 
the corresponding fractional Laplacian models. Numerical experiments show the validity and applicability of the 
derived fundamental solution of the Hausdorff Laplace equation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractal has attracted great attention in many diverse fields since its 
inception. However, its success in real-world applications is largely re- 
stricted because its corresponding calculus formalism is not fully estab- 
lished. Nowadays there exist a few calculus methodologies for modeling 
physics behaviors in fractal media. The analysis on fractals is a classical 
method based on the fractal sets, and is mathematically sophisticated 
and difficult to use in practice. Thus, this strategy does not attract a lot 
of attention in scientific and engineering communities [1] . 

In recent decades, the fractional calculus has become very popular 
in modeling anomalous diffusion, creep, relaxation, and power law vis- 
cous dissipation, just to mention a few [2–8] . The fractional calculus is 
in fact an integro-differential operator and can inherently well describe 
some non-local and history-dependent behaviors, but this methodology 
encounters computationally very expensive costs due to its non-local 
property. In addition, the fractional derivative diffusion models are re- 
stricted to describe the problems underlying the Levy and the ML statis- 
tics, and its underlying relationship with the fractal was not clear [9] and 
was somewhat revealed very recently in [10] . 

As an alternative modeling approach to the fractional calculus, the 
Hausdorff derivative was introduced [11] as a local operator to over- 
come high computing costs of the non-local fractional derivative. In 
addition, the Hausdorff derivative is capable to describe the diffusion 
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problems underlying the well-known stretched Gaussian statistics and 
the Kohlrausch–Williams–Watts stretched exponential decay [11] . It is 
noted that the Hausdorff derivative order has clear physical meaning 
and is directly related to the fractal dimension [10] . As pointed out in 
Ref. [12] , the Hausdorff derivative is in fact equivalent to the fractal 
derivative proposed in Refs. [13, 14] , and its rigorous mathematical 
analysis is provided in Ref. [14] . In recent years, the Hausdorff deriva- 
tive has attracted great attention and is widely used in various complex 
problems in scientific and engineering fields, such as water resources 
[15] , anomalous diffusion [16] , the creep of viscoelastic materials [17] , 
magnetic resonance imaging (MRI) [18,19] , heat conduction [20] , and 
economics [21] . 

Ref. [11] gave the fundamental solution of the one-dimensional 
Hausdorff derivative transient diffusion equation via the fractal met- 
ric spacetime, namely, the Hausdorff fractal distance called in this 
study. This paper employs this non-Euclidean metric to derive the fun- 
damental solution of the Hausdorff derivative Laplace, Helmholtz, and 
convection-diffusion equations. And then the singular boundary method 
(SBM) [22,23] , a recent meshless boundary collocation method based on 
the fundamental solution, is applied to numerically simulate the Haus- 
dorff derivative Laplace equation of steady heat transfer problems. Nu- 
merical results are discussed and compared with those given in Ref. 
[24] . 

A brief outline of the rest of this paper is as follows: Section 2 reviews 
the Hausdorff derivative, and introduces the definition of the Hausdorff
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Table 1 

Fundamental solutions for most commonly used Hausdorff differential operators on the non- 
Euclidean Hausdorff fractal distance of two and three topological dimensions. 

Operator Two-dimensional Three-dimensional 
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Fig. 1. Nodal integration domain in (a) 2D and (b) 3D problems. 

Fig. 2. Steady heat transfer in a 2D fractal media. 

fractal distance. And then Section 3 gives the fundamental solutions of 
a few typical partial differential equation models. Section 4 discusses 
numerical experiment results of steady heat conduction problems gov- 
erned by the Hausdorff Laplace equation via the SBM. Finally, some 
conclusions are drawn in Section 5 . 

2. Hausdorff derivative and non-Euclidean Hausdorff fractal 

distance 

Considering a particle movement in terms of fractal time, the move- 
ment distance can be calculated by [10] 

𝑙 ( 𝜏) = 𝑣 
(
𝜏 − 𝑡 0 

)𝛼
, (1) 

where l denotes the distance, v represents the uniform velocity, 𝜏 the 
current time instance, t 0 the initial instance, 𝛼 the fractal dimensionality 
in time. When velocity varies with time, the Hausdorff integral distance 
is given by 

𝑙 ( 𝑡 ) = ∫
𝑡 

𝑡 0 

𝑣 ( 𝜏) 𝑑 
(
𝜏 − 𝑡 0 

)𝛼
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Table 2 

Errors and CPU time by using the SBM and the BEM with different number of 
nodes (or elements) for the two-dimensional heat transfer problem of integer 
dimension. 

N BEM SBM 

L ∞ CPU time(s) L ∞ CPU time(s) 

200 2.0814 ×10 –2 0.60840 3.0918 ×10 –2 0.15600 
400 3.9964 ×10 –3 2.26200 5.3899 ×10 –3 0.70200 
600 1.4664 ×10 –3 5.44440 1.9052 ×10 –3 2.44920 
800 7.1454 ×10 –4 12.1681 9.0748 ×10 –4 6.89520 
1000 4.0717 ×10 –4 19.9213 5.0949 ×10 –4 11.1853 

We can derive the Hausdorff derivative from the above Hausdorff
derivative expression (2) 

𝑑𝑙 
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Let the initial instance t 0 be set zero, we have [11] 
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By analogy with the above time Hausdorff derivative, the Hausdorff
derivative in space is stated as 

𝑑𝑢 

𝑑 𝑥 𝛽
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, (5) 

where 𝛽 represents the Hausdorff fractal in space. Note that the origin 
of spatial coordinate system in expression ( 5 ) is assumed zero. 

The first author of this paper introduced the concept of the fractal 
metric spacetime in one-dimensional topological fractal media [11] { 

Δ𝑡 = Δ𝑡 𝛼
Δ�̂� = Δ𝑥 𝛽 . (6) 

The above metric transform ( 6 ) is based on the two hypotheses: 
fractal invariance and fractal equivalence. In order to distinguish the 
above fractal metric from the fractal metric proposed by Balankin and 
Elizarraraz [25] , which is more general and includes the above metric 
( 6 ) as a special case, this paper calls the metric ( 6 ) as the Huasdorff
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