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A B S T R A C T

This paper introduces a weak meshless procedure combined with a multi-resolution numerical integration and
its comparison with a strong local meshless formulation for approximating displacement and strain modeled in
the form of Elliptic Boundary Value Problems (EBVPs) in one- and two-dimensional spaces. Assets and losses of
both strong and weak meshless approaches are considered in detail. The meshless weak formulation considered
in the current paper is the well-known Element Free Galerkin (EFG) method whereas the Local Radial Basis
Functions Collocation Method (LRBFCM) is taken as a strong formulation. First aspect of the current work is
implementation of the new numerical integration techniques introduced in Siraj-ul-Islam et al. (2010) and Aziz
et al. (2011) [1,2] in the EFG method and its comparison with numerical integration based on standard
Gaussian quadrature, adaptive integration and stabilized nodal integration techniques used in the context of
EFG and other allied weak meshless formulations. Second aspect of the current work is analysis of comparative
performance of the localized versions of strong and weak meshless formulations. Standard numerical tests are
conducted to validate performance of both the approaches.

1. Introduction

Meshless methods have been emerged alternate simulation tools to
the well-established numerical methods, such as Finite-Difference
Method (FDM), Finite Element Method (FEM) and Boundary
Element Method (BEM). Distinctions of the meshless methods versus
the conventional methods are their independence from priori nodal
connectivity or geometric meshes and ease of implementation in higher
dimensions. History of meshless algorithms dates back to the Smooth
Particle Hydrodynamics (SPH) method used in modelling and simula-
tion of astrophysical phenomena [3]. After the publication of the
Diffuse Element Method (DEM) [4], research interests escalated
quickly towards development of different types of meshless methods.
Consequently, several variants of the meshless procedures were
introduced in the literature. These include Element Free Galerkin
(EFG) method [5], Reproducing Kernel Particle Method (RKPM) [6],
hp-cloud method [7], Partition of Unity Finite Element Method
(PUFEM) [8], Meshless Galerkin method using Radial Basis Function
(MGRBF) [9], Meshless Local Boundary Integral Equation (MLBIE)
method, Meshless Local Petrov Galerkin (MLPG) method [10–12],
Singular Boundary Method (SBM) [13,14] and Meshless Collocation
Method [15].

Unlike FEM, numerical integration is one of the crucial issues
encountered in the weak meshless formulation. The main advantage of

FEM is that the shape functions are piecewise polynomials of degree n
and their n( + 1) th order derivatives vanish, thus leading to the exact
calculation of stiffness matrix. On the contrary, shape functions in the
weak form of meshless methods are non-polynomials (rational func-
tions). The p − th order derivatives of these functions grow as the step
size between the nodal points decreases and so no quadrature scheme
will have a pre-determined degree of precision in the evaluation of the
integrals [16]. The difficulty in obtaining exact numerical integration in
meshless methods is resulted from complexity of the shape functions.
In each small integration region, the shape functions may have
different forms. In some regions of the domain, derivatives of the
shape functions may have oscillations as well. Consequently, insuffi-
ciently accurate numerical integration may cause deterioration and
rank deficiency in the numerical solution [10,17].

There are two main sources of errors in the weak form of meshless
methods. The first error is emanating from approximation of the shape
functions and the second one is due to numerical integration. Because
of sensitivity of the weak form of meshless methods to numerical
integration, accuracy of the numerical integration has been in focus
(see [18] and the references there in). Numerical integration plays an
important role in accurate and stable numerical solution of meshless
methods based on weak formulation [11].

In the literature, several ideas have been reported for accurate and
stable evaluation of component integrals of the stiffness matrix. These
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include: nodal integration [19–22], background mesh integration [23],
stress point integration [24], partition of unity quadrature [25,26],
stabilized conforming nodal integration technique [21,27–29] and
some other techniques [10,30,31,12]. However, difficulties of numer-
ical integration in weak meshless formulation have not yet been fully
resolved.

A substantive amount of work on nodal integration and stabilized
nodal integration can be found in the literature. Stabilized nodal
integration procedure while resolving some of the stability issues of
the nodal integration, creates more problems, like high computational
efforts and tuning of the stabilization parameter to the desired accuracy
and convergence [28]. In addition, meshless method like the EFG
needs a background mesh for the purpose of numerical integration.

Due to the inconvenience caused by numerical integration in the
weak meshless formulation, a mathematically simpler strong form of
meshless collocation approach exists in the literature [32–35]. This
approach is implemented both in global and local meshless collocation
forms. Global meshless collocation method is prone to ill-conditioned
system matrix and is strongly dependent on the right selection of shape
parameter (in the case of shape parameter dependent RBFs). The local
meshless collocation methods instead are implemented on a number of
local sub-domains yielding a local approximation with exponential
convergence [28]. In comparison to the global meshless methods, the
local meshless method produces a relatively well-conditioned system
matrix. A Radial Point Interpolation Collocation Method (RPICM) with
Thin Plate Spline (TPS) radial basis functions has been used for the
numerical solution of nonlinear Poisson's problems [32].

Both weak and strong meshless formulations are subject to
instabilities of different origins. The weak meshless formulation is
suffering from the instability resulting from rank deficiency of the
nodally integrated Galerkin meshless method, whereas, the global
meshless methods in strong formulation have instability due to ill-
conditioned system matrix. In a recent review paper of Liu [36], a
detailed discussion can be found about weak and strong meshless
formulations along with their associated advantages and disadvan-
tages. Issues related to instability to the RPICM and some regulariza-
tion techniques has been reported in [37–40,36].

Despite of difficulty in handling Neumann boundary conditions and
shape parameter selection, recent advancements in various forms of
localized meshless methods and their successful applications in ther-
mo-fluid [41], macrosegregation with mesosegregates in binary metal-
lic casts [42], freezing with natural convection [43], and wound healing
modelling [44] have raised expectations of many researchers working
in this area. Mathematical analysis of both forms of meshless methods
and resolution of the above mentioned challenges are still in the early
stages and deserve further focused efforts for bridging theoretical gapes
necessary for the full pledged development of this new class of
computational methods. One such comprehensive analysis has recently
been reported in [45].

The current work is an initial step to highlight the above mentioned
challenges faced by both strong and weak meshless formulation. In this
work we employ a multi-resolution integration techniques [1,2] and
explore their new applications in the context of numerical integration
in the EFG method. Another contribution of the current work is a
comparative performance of the local meshless strong formulation with
meshless weak formulation for the elliptic boundary-value problems,
for calculating displacement and strain. The localized RBFs meshless
collocation method has been applied to problems with local features
[46,47], such as problems with heterogeneity or cracks, dispersion of
contaminants in an open channel flow [48,49] and wound healing
modelling [44]. The LRBFCM is also used in variety of other applica-
tions such as multi-scale solidification modelling, numerical solution of
convection-diffusion PDEs and other applications [35,42,50–55]. The
problems considered in this paper are challenging for the weak
meshless formulation due to some critical issues such as jump
phenomena and ill-conditioned system matrices.

The organization of the paper is as follows. In Section 2, the EFG
method formulation for one- and two- dimensional EBVPs is briefly
described. In Section 3, the moving least squares (MLS) approximation
is presented. In Section 4, quadrature rules based on Haar wavelets in
one- and two- dimensions are described. In Section 5, the LRBFCM is
presented briefly. In Section 6, several numerical examples of different
types are discussed. Finally some conclusions of the paper are drawn in
Section 7.

2. EFG method

In this section, the weak formulation based on EFG method for one-
and two-dimensional EBVPs is briefly introduced.

2.1. One dimensional EFG formulation

Consider the following second order one-dimensional EBVP

⎛
⎝⎜

⎞
⎠⎟

d
dx

α du
dx

βu g x Ω a b− + + ( ) = 0 in = ( , ),
(1)

with the boundary conditions:

u n t Γ

u u Γ

= on ,

= on ,
x t

u

,

(2)

where α, β, g(x), t , and u are the known quantities of the problem and n
is the unit outward normal on the boundary.

The weak formulation of (1) can be written as,
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where v(x) is the weight function also called test function.
Integration by parts of Eq. (3) and rearrangement of the terms leads

to the following weak formulation,
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One of the interesting property of weak formulation is the direct
imposition of Neumann (natural) boundary conditions, whereas the
Dirichlet (essential) boundary conditions is enforced most commonly
by either using Lagrange's multiplier or penalty methods. Both the
methods give same accuracy as they operate on the same variational
form [56].

Similar to the Galerkin procedure, the trial function of the unknown
solution u(x) and the test function is chosen from the same space. In
the EFG method, usually the moving least squares (MLS) approxima-
tion is chosen as a trial function with a vanishing weight function v over
the essential boundary. Thus, eliminating the corresponding terms in
Eq. (4) we have,
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Typically the weight function v(x) used in Eq. (3) and in the MLS
approximation is the same, which is usually chosen either cubic,
quartic splines or Gaussian function. In this paper, we use the following
cubic spline weight function:
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