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A B S T R A C T

In this study, a boundary element method coupled with numerical manifold method is developed for solving
potential problems in two dimension. This approach combines an equivalent variational form of a boundary
integral equation with the finite cover approximations for generating the trial and test functions of the
variational formulation. This method exploits the reduced dimensionality advantages of the BEM, and is
especially suited for the problems with an unbounded domain. Since the local cover function can be chosen in
the covers arbitrarily, the method provides flexibility to use different cover functions for different covers and
increases the solution accuracy without any local mesh refinement, and the p-adaptive analysis can also be
performed conveniently. The validity and efficiency of the present method are demonstrated by some numerical
examples of potential problems.

1. Introduction

The numerical manifold method (NMM) [1,2] is a novel computa-
tional approach which can analyze general continuous and discontin-
uous problems in a unified way. The main feature of this method is that
there are two separated and independent cover system, i.e. mathema-
tical covers and physical covers. Based on the finite cover approxima-
tion theory, the NMM combines the finite element method (FEM) and
the discontinuous deformation analysis (DDA) so that this method is
more suitable than other numerical methods for problems with
discontinuous and moving boundaries, e.g. crack propagation pro-
blems [3–7], free surface flow problems [8–11], and so on. In recent
years, this method has made great achievements in many fields.

Compared with the FEM, the NMM can perform the p-adaptive
analysis without limitation. Chen et al. [12] derived detailed formula-
tions of the high-order NMM. Based on tetrahedral meshes, Jiang et al.
[13] extended this method to 3D. Zheng et al. [14] constructed the
numerical manifold space of the Hermitian form to solve the
Kirchhoff’s thin plate problems, and made some earliest developed
elements in finite element history, e.g. Zienkiewicz’s plate element, to
regain their vigor. Wong and Wu [15] adopted the displacement-
dependent cohesion removal method to overcome the limitation of the
original NMM associated with an improper removal of the interface
cohesion of the discontinuities, and investigated the progressive failure

in rock slopes. Through modifying the finite element partition of unity
(PU) into the flat-top PU, the linear dependence problem involved in
finite element PU-based high-order polynomial approximation was
successfully alleviated [16]. By coupling the NMM with non-uniform
rational B-splines (NURBS) and T-splines, the numerical manifold
method based on isogeometric analysis was proposed by Zhang et al.
[17], and the local refinement technique using T-splines reduced the
number of degrees of freedom while maintaining calculation accuracy
at the same time. In order to avoid completely the linear dependence
problem in theory, Fan et al. developed two approaches in NMM, one
employed the nine-node triangular meshes which the high-order PU
function was employed [18], and the other added the derivative degrees
of freedom with physical meaning to original displacement degrees of
freedom [19]. In the conventional NMM, the false volume expansion
and other issues exist in solving large deformation and large rotation
problems. In view of this consideration, the S-R (strain-rotation)
decomposition and the generalized-α method were introduced, Fan
et al. [20] established the S-R-D based NMM, improved the perfor-
mances of this approach in the analysis of dynamic large deformations,
and demonstrated the superiority and potential of the NMM.

The above numerical manifold methods can be considered as the
generalization of the classical FEM. Meanwhile, the boundary element
method (BEM) [21] is also an attractive numerical method for solving a
wide variety of computational engineering and science problems as it
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can reduce the dimensionality of the original problem by one.
Especially for exterior problems, the FEM requires discretization of
the entire exterior, whereas with the BEM only the surface needs to be
discretized. The BEM has been successfully used in fields of elasticity
[21], geomechanics [22,23], fracture mechanics [24], and so on. In
order to solve large-scale problems, Liu et al. [25] introduced the fast
multipole method into the BEM. In concept of isogeometric analysis,
Simpson et al. [26] proposed an isogeometric boundary element
method (IGABEM), in which the NURBS basis permitted exact
representation of commonly used geometries including circular arcs,
and a meshing process was no longer required. Combing the meshless
idea with the boundary integral equations, some boundary type
meshless methods were also developed, e.g. the boundary node method
(BNM) [27], the local boundary integral equation (LBIE) method [28],
the hybrid boundary node method (HBNM) [29], the boundary
element-free method (BEFM) [30,31], the Galerkin boundary node
method (GBNM) [32–34], and so on.

In this study, a boundary element method coupled with numerical
manifold method is developed for solving potential problems in two
dimension. The finite cover approximation is implemented to construct
the trial and test functions of the variational form so that the p-
adaptive analysis can be performed conveniently. This method also
exploits the reduced dimensionality advantages of the BEM, and is
especially suited for the problems with an unbounded domain.
Moreover, the ‘stiffness’ matrices are symmetric, which makes this
approach computationally efficient and provides advantage for cou-
pling it with finite element method.

The discussion of this method are arranged as follows: Section 2
introduces some basic theory in the NMM. In Section 3, a detailed
numerical implementation of the proposed method is described for
solving potential problems. Section 4 gives some numerical examples.
Finally, the paper will be ending with conclusions in Section 5.

2. The NMM approximation scheme

2.1. Basic concepts of the NMM

The NMM approximation is based on three basic concepts, i.e. the
mathematical cover (MC), the physical cover (PC) and the manifold
element. The mathematical covers define only the fine or rough
approximations, so they are chosen by users, and consist of finite
overlapping covers which occupy the whole domain. Usually, the
conventional meshes and regions can be transferred to mathematical
covers. On each mathematical cover, a partition of unity function is
defined. While the physical cover system is formed by intersecting
mathematical covers and the physical features, such as the boundaries
of domain, the discontinuities, the material interfaces and so on. On
each physical cover, a local function is defined. The common area of
several physical covers forms a manifold element. The NMM employs
the partition of unity functions to paste all the local functions together
to give a global approximation over each manifold element. Further
details of geometrical aspects of the NMM were deliberately elucidated
in Refs. [1,5].

2.2. The NMM approximation technique

The NMM approximations are used for constructing the trial and
test functions on boundary. The cover weight functions are practically
equivalent to the shape functions in the boundary element analysis.
The local cover function can be of various forms such as a constant
basis function, a linear basis function, and a higher-order polynomial
basis function.

Let Γ be a smooth, simple closed curve in the plane, and let Ω and
Ω′ denote its interior and exterior respectively. Usually, the mathema-
tical cover and the physical cover are generally independent. In Fig. 1,
only the boundary of domain is intersected with mathematical covers,

so the physical cover overlaps with the mathematical cover. We use N
covers, i.e., U i N, = 1, 2,…,i , to occupy the whole boundary Γ(see
Fig. 1). The local cover function vi of any cover Ui can be constructed
by a linear combination of mutually independent functions fi j, of a
given order m and the constant coefficients di j, , and can be written in a
matrix form as
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i ,1 ,2 , is called the local degree of the freedom vector.
Assume that any manifold element e presents the common part of

several overlapped coversU i q( = 1, 2,…, )e i( ) , and the function w x( )e i( ) is
the weight function corresponding to the cover Ue i( ). The displacement
function of the manifold element e can be approximated as
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where T wx x f( ) = ( )i e i e i( ) ( ) is a row vector of order m, and di is column
vector of order m.

3. Boundary element method coupled with NMM

Consider the interior and exterior Dirichlet problems
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and Neumann problems
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where u and q are the prescribed functions; and n is the unit outward
normal.

The solution of Dirichlet problem, i.e. Eq. (3) can be represented by
a double layer potential [33]
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and Neumann problems, i.e. Eq. (4) can be solved via a simple layer
potential [33]

Fig. 1. Problem domain, mathematical cover, physical cover and manifold element.
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