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ARTICLE INFO ABSTRACT

Keywords: The paper presents a general boundary element approach for analysis of 3D cracks in anisotropic
Thermomagnetoelectroelastic thermomagnetoelectroelastic solids. Dual boundary integral equations are derived, which kernels are explicitly
Anisotropic written. These equations do not contain volume integrals in the absence of distributed body heat and extended
Crack . body forces, which is advantageous comparing to the existing approaches. The issues on the boundary element
Hypersingular

solution of these equations are discussed in details. The efficient numerical evaluation of kernels based on the
trapezoid rule is proposed. Modified Kutt's quadrature with Chebyshev nodes is derived for integration of
singular and hypersingular integrals. Nonlinear polynomial mappings are adopted for smoothing the integrand
at the crack front, which is advantageous for accurate evaluation of field intensity factors. Special shape
functions are introduced, which account for a square-root singularity of extended stress and heat flux at the
crack front. The issues on numerical determination of field intensity factors are discussed. Several numerical
examples are presented, which show the efficiency (low computational time and high precision) of the proposed
boundary element formulation.

1. Introduction

Thermomagnetoelectroelastic (TMEE) materials are used in the
wide range of modern precise devices. Those are smart structures
(pyroelectrics, pyromagnetics and composite materials containing both
phases), which can convert different fields, and serve as sensors,
actuators or even complex micro-electro-mechanical systems. The
rapid development of modern multi-field materials and micro-elec-
tro-mechanical technologies raises increasing attention to their model-
ing and simulation. Particular interest is focused on the issues of
fracture mechanics of TMEE materials [1]. Since TMEE materials are
anisotropic by nature, their analysis is more complicated than those of
isotropic materials.

The boundary element method (BEM) is widely applied in the linear
fracture mechanics [2—4], since it allows accurate evaluation of field
intensity factors at the crack front and requires only boundary mesh.
Various boundary element techniques were proposed for 3D fracture
mechanics analysis. Mi and Aliabadi [3] derived a 3D dual BEM for
analysis of 3D cracks in isotropic linear elastic solids. Saez et al. [5]
presented a boundary element formulation for crack analysis in
transversely isotropic solids. Pan and Yuan [6] developed a single-
domain BEM for 3D fracture mechanics analysis in generally aniso-
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tropic solids. Rungamornrat and Mear [7] derived a symmetric
Galerkin BEM for analysis of cracks in 3D anisotropic media. These
approaches are closely related to the techniques of anisotropic Green's
functions evaluation [8—10], since the latter significantly influence
efficiency and accuracy of the BEM.

Nevertheless, coupling of different fields in the solid's material
significantly complicates boundary element formulations. Many re-
searches address the issues of thermal expansion influence on fracture
parameters. In instance, Dell’erba et al. [11] developed a dual BEM for
3D thermoelastic crack problems. Mukherjee et al. [12] derived
regularized hypersingular boundary integral equations for isotropic
thermoelastic fracture mechanics.

A number of works address piezoelectric, piezomagnetic and
magnetoelectroelastic coupling. Rungamornrat and Mear [13] and
Rungamornrat et al. [14] derived a symmetric Galerkin BEM for 3D
fracture mechanics analysis of piezoelectric solids. Zhao et al. [15]
presented the extended discontinuity boundary integral equation
method for vertical cracks in magnetoelectroelastic medium. Mufioz-
Reja et al. [16] presented the 3D BEM for fracture mechanics analysis
of anisotropic magnetoelectroelastic materials.

However, to this end there is no general 3D BEM for analysis of 3D
cracks in anisotropic medium, which couples both thermal and
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magneto-electro-mechanical fields. Several papers [17-19] address
only the particular problems for a penny-shaped crack or two parallel
concentric circular cracks in a thermopiezoelectric medium. No works
addressing TMEE medium containing 3D cracks of arbitrary shape
were found in scientific literature.

Besides, there is no single and efficient approach for evaluation of
anisotropic kernel functions, since the latter can be presented through
the contour integrals or the particular eigenvalue problems. Different
approaches [20,21] are used; however, computational costs are high,
which is essential in the derivation of fast BEM code.

Therefore, this paper utilizes previously developed novel boundary
integral equations [22] for obtaining the dual BEM for TMEE solids
containing 3D cracks. All kernels are obtained explicitly. The issues on
the efficient numerical evaluation of kernel functions, integration of
singular and hypersingular integrals and accurate determination of
field intensity factors are discussed in details.

2. Governing equations of heat conduction and
thermomagnetoelectroelasticity

According to [22], in a fixed Cartesian coordinate system Oxx,x; the
equilibrium equations, the Maxwell equations (Gauss theorem for
electric and magnetic fields), and the balance equations of heat
conduction in the steady-state case can be presented in the following
compact form

O +hy =0, by =, =0, (€8]

where the capital index varies from 1 to 5, while the lower case index
varies from 1 to 3,1e. /=1, 2, ...,5;i =1, 2, 3. Here and further the
Einstein summation convention is used. A comma at subscript denotes
differentiation with respect to a coordinate indexed after the comma,
Le. u;; = ou/ox;.

In the assumption of small strains and fields’ strengths the
constitutive equations of linear thermomagnetoelectroelasticity in the

compact notations are as follows [22]
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; is a stress tensor; f is a body force vector; D; is an electric
displacement vector; g is a free charge volume density; B; is a magnetic
induction vector; b, is a body current; #; is a heat flux; f, is a distributed
heat source density; u; is a displacement vector; ¢, y are the electric
and magnetic potentials, respectively; 0 is a temperature change with
respect to the reference temperature; Cy, are the elastic stiffnesses
(elastic moduli); k; are heat conduction coefficients; e, h; are
piezoelectric and plezomagnetlc constants; «;, u;, y; are dielectric
permittivities, magnetic permeabilities and electromagnetic constants,
respectively; By %, and 1; are thermal moduli, pyroelectric coefficients
and pyromagnetic coefficients, respectively.

According to [22], the extended magnetoelectroelastic tensor CN’,j,(m

has the following useful symmetry property

Q)

Thus, the problem of linear thermomagnetoelectroelasticity is to
solve partial differential equations (1) and (2) under the given
boundary conditions and volume loading. Since magneto-electro-
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mechanical fields do not influence temperature field in the considered
problem (uncoupled thermomagnetoelectroelasticity) the first step is to
solve the heat conduction equation and the second one is to determine
mechanical, electric and magnetic fields acting in the solid.

3. Hypersingular boundary integral equations for 3D
thermomagnetoelectroelasticity

Recently, novel truly boundary integral formulae were obtained for
3D anisotropic heat conduction and thermomagnetoelectroelasticity
[22]
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where %8 is a boundary of the domain 8 occupied by the solid; , is a
unit outwards normal vector to the surface 0%B; 7; = &, is an extended
traction vector; h, = hn;; t is a unit vector collinear with x — y; and A is
a unit vector normal to x — y; y is an internal point in the domain %B;
T, ,}l(é) are the components of the matrix, which is inverse of the matrix
k(&) = Cntiys 1€ TR (Ek) (&) = 5. Here and further the derivatives
are evaluated for the variables x;.

Integral formulae are the basis for derivation of the boundary
integral equations, which replaces the boundary value problem for
partial differential equations (1) and (2). Taking the limit when internal
point y approaches the boundary point x, € 0% in the assumption that
the boundary ¢%8 is smooth at x, one obtains
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where CPV stands for the Cauchy Principal Value of the integral. These
equations allow obtaining the unknown boundary functions, which are
not set by the boundary conditions. Thereafter, when all boundary
functions are known Egs. (5) and (6) allow determining thermal,
magnetic, electric and mechanical fields at an arbitrary internal point
of the solid.

Nevertheless, integral equations (10) and (11) degenerate, when the
boundary 08 or its part has the shape of a mathematical cut [23]. In
this case both displacement and traction boundary integral equations
should be used. Therefore, one should utilize Egs. (2), (5) and (6) to
derive heat flux and extended stress integral formulae and then apply
limiting procedure to obtain heat flux and extended traction integral
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