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a b s t r a c t

Introduction: It has become clear that noise generated during the assay and analytical processes has the
ability to disrupt accurate interpretation of genomic studies. Not only does such noise impact the scien-
tific validity and costs of studies, but when assessed in the context of clinically translatable indications
such as phenotype prediction, it can lead to inaccurate conclusions that could ultimately impact patients.
We applied a sequence of ranking methods to damp noise associated with microarray outputs, and then
tested the utility of the approach in three disease indications using publically available datasets.
Materials and methods: This study was performed in three phases. We first theoretically analyzed the
effect of noise in phenotype prediction problems showing that it can be expressed as a modeling error
that partially falsifies the pathways. Secondly, via synthetic modeling, we performed the sensitivity anal-
ysis for the main gene ranking methods to different types of noise. Finally, we studied the predictive
accuracy of the gene lists provided by these ranking methods in synthetic data and in three different
datasets related to cancer, rare and neurodegenerative diseases to better understand the translational
aspects of our findings.
Results and discussion: In the case of synthetic modeling, we showed that Fisher’s Ratio (FR) was the most
robust gene ranking method in terms of precision for all the types of noise at different levels. Significance
Analysis of Microarrays (SAM) provided slightly lower performance and the rest of the methods (fold
change, entropy and maximum percentile distance) were much less precise and accurate. The predictive
accuracy of the smallest set of high discriminatory probes was similar for all the methods in the case of
Gaussian and Log-Gaussian noise. In the case of class assignment noise, the predictive accuracy of SAM
and FR is higher. Finally, for real datasets (Chronic Lymphocytic Leukemia, Inclusion Body Myositis
and Amyotrophic Lateral Sclerosis) we found that FR and SAM provided the highest predictive accuracies
with the smallest number of genes. Biological pathways were found with an expanded list of genes whose
discriminatory power has been established via FR.
Conclusions: We have shown that noise in expression data and class assignment partially falsifies the sets
of discriminatory probes in phenotype prediction problems. FR and SAM better exploit the principle of
parsimony and are able to find subsets with less number of high discriminatory genes. The predictive
accuracy and the precision are two different metrics to select the important genes, since in the presence
of noise the most predictive genes do not completely coincide with those that are related to the pheno-
type. Based on the synthetic results, FR and SAM are recommended to unravel the biological pathways
that are involved in the disease development.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The revolution in molecular biology and the development of
high-throughput technologies for sequencing in genetic and geno-
mic analyses has generated an explosion in the amount of genetic
data. These technologies, which have been firstly applied in

research, are now increasingly applied in translational medicine.
Particularly, gene expression analysis through hybridization
microarrays or RNA sequencing is now a conventional component
in many areas of biomedical research. This kind of experiments has
a very high under-determined character since the number of sam-
ples (patients) is much lower than the number of monitored
probes (genes). Therefore, gene-ranking methods are needed to
establish the discriminatory power of the genes in the phenotype
prediction.
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In this paper we first theoretically analyzed the effect of noise in
phenotype prediction problems by casting them into abstract opti-
mization problems. To accomplish this, we first show that noise in
data can be expressed as a modeling error that partially falsifies the
set of discriminatory probes that are phenotype-related, and there-
fore the biological pathways that are involved. Secondly, the sensi-
tivity to different kind of noise (in expression and class
assignment) for the main gene ranking methods (Fold Change,
Fisher’s Ratio, Percentile Distance and Entropy) compared to
well-established Significance Analysis of Microarrays (SAM) [1] is
performed via synthetic microarray modeling. This analysis has
shown that in general terms Fisher’s ratio is the most robust
method in terms of precision closely followed by SAM. Besides,
both methods provided the smallest sets with the highest discrim-
inatory power. The effect of noise increases the number of genetic
probes that are needed to slightly improve the predictive accuracy.
Therefore, an optimum method to find the biological pathways in
translational problems will consist of ranking the differential
expressed genes decreasingly by their corresponding Fisher’s ratio.
The results of these analyses are confirmed using three different
datasets concerning the study of cancer (Chronic Lymphocytic Leu-
kemia), rare diseases (Inclusion Body Myositis) and neurodegener-
ative diseases (Amyotrophic Lateral Sclerosis). We found that FR
and SAM provide the highest predictive accuracies with the small-
est number of genes, exploiting the principle of parsimony.
Besides, we show their corresponding biological found with an
expanded list of genes whose discriminatory power has been
established via FR. In these three cases, the effect of viral infections
in the corresponding pathways is clear. We demonstrated that
applying a proper ranking method the influence of noise in
microarray expression dataset and the corresponding error in the
classification induced by the different sources of noise can be
reduced. Similarly to the analysis shown in this paper, Lorena
et al. [2] have studied the particular characteristics of cancer gene
expression data mostly impact the prediction ability of support
vector machine classifiers. We expect that the results of this anal-
ysis will help optimize the use of these methods in translational
medicine, particularly in the biological understanding of different
diseases and in drug optimization problems.

2. Material and methods

2.1. The effect of noise in phenotype prediction

One of the main obstacles in the analysis of genomic data is the
absence of a conceptual model that relates the different genes/
probes to the class prediction (phenotype). Machine-learning algo-
rithms are therefore needed to model these complex relationships.
For this reason, a classifier L�ðgÞ has to be constructed and it is
defined as an application between the set of genetic signatures g
and the set of classes C ¼ fc1; c2; . . . ; cng in which the phenotype
is divided:

L�ðgÞ : g 2 Rs ! C ¼ fc1; c2; . . . ; cng ð1Þ

where s is the number of genetic probes that have been monitored.
In most cases, the classification problem involved is binary.
The machine learning procedure is composed of two stages:

1. The learning process, that consists in giving a subset of samples
T (training data set) whose class vector is known, cobs, finding
the subset of genetic signatures g that maximizes the learning
accuracy, that is, the number of samples whose class is correctly
predicted. This can be written as the result of the following
optimization problem:

OðegÞ ¼ min
g2Rs

OðgÞ;

OðgÞ ¼ kL�ðgÞ � cobskp;
L�ðgÞ ¼ ðL�ðg1Þ; . . . ; L�ðgmÞÞ;

ð2Þ

where L�ðgÞ is the set of predicted classes, gi is the genetic signature
corresponding to the sample i in the training dataset T, and
kL�ðgÞ � cobskp stands for the distance between the predicted (L*
(g)) and observed classes cobs in T. For instance if the vector of
classes cobs is composed of two consecutive class indexes f1;2g,
and p ¼ 1, then kL�ðgÞ � cobskp provides the number of samples that
have been misclassified. Nevertheless, in this paper the theoretical
analysis is performed for any arbitrary norm, in order to understand
the impact of noise in phenotype prediction.
2. The generalization, that consists in predicting the class of a new

sample (gnew) whose class is unknown using the genetic signa-
tures that have been found during the learning process.
One of the main numerical difficulties in learning is the high

dimensionality of the genomic data since the number of monitored
probes (or genes) is much greater than the number of samples (or
patients). This fact provokes that the phenotype prediction in the
learning stage will have a very high underdetermined character.
Therefore, several gene lists with similar predictive accuracy might
exist. This fact can be easily understood considering the classifica-
tion as a parameter identification or inverse problem [3]: the
topography of the cost function OðgÞ in the region of lower misfits
(or higher predictive accuracies) corresponds to flat elongated val-
leys with null gradients where the high predictive genetic signa-
tures are located. Obviously, the topography changes if the space
where the optimization is performed (Rs) changes. All these high
predictive lists are expected to be involved in the genetic pathways
that explain the phenotype. The smallest-scale signature is the one
that has the least number of discriminatory genes. In practice, the
predictive accuracy of a genetic signature, OðgÞ, is performed via
cross-validation. This knowledge could be very important for early
diagnosis and treatment optimization. Also, the sets of high predic-
tive signatures in any phenotype prediction problem can be used
to construct biomedical robots that exploit the uncertainty space
of the phenotype prediction, to improve the predictive accuracy
of the classifier with its corresponding risk assessment, helping
to get a better understanding the biological pathways [4].

The presence of noise in the genomic data will impact the clas-
sification and obviously the pathway analysis resulting from this
procedure. There are at least two main sources of noise in pheno-
type prediction problems:

� Noise in the gene expression induced by the process of mea-
surement. In this case, the observed genetic expression of a
sample j, gobs

j , can be expressed as the sum of the true genetic

expression array, gtrue
j , and the measurement noise,

dgj : gobs
j ¼ gtrue

j þ dgj. Therefore, using a simple Taylor expan-
sion we get:

L�ðgobs
j Þ ¼ L�ðgtrue

j Þ þ dL�ðdgjÞ

¼ L�ðgtrue
j Þ þ

Xs

k¼1

@L�

@gk
ðgtrue

j Þdgjk þ oðdgjÞ; ð3Þ

where oðdgjÞ vanishes when the noise term dgj ! 0: Obviously, this
analysis is theoretical because gtrue

j and dgj are unknown.
� Noise in the class assignment since some samples could be
wrongly annotated or might belong to a different class, not
yet discovered. Naming ctrue the true class assignment array
and dc the noise in the class assignment, then the observed class
array will be cobs ¼ ctrue þ dc.
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