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We propose to apply a low dimensional manifold model to scientific data interpolation 
from regular and irregular samplings with a significant amount of missing information. The 
low dimensionality of the patch manifold for general scientific data sets has been used as a 
regularizer in a variational formulation. The problem is solved via alternating minimization 
with respect to the manifold and the data set, and the Laplace–Beltrami operator in 
the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various 
scientific data sets from different fields of study are used to illustrate the performance 
of the proposed algorithm on data compression and interpolation from both regular and 
irregular samplings.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Interpolation and reconstruction of scientific data sets from sparse sampling is of great interest to many researchers 
from various communities. In many situations, data are only partially sampled due to logistic, economic, or computational 
constraints: limited number of sensors in seismic data or hyperspectral data acquisition, low-dose radiographs in medical 
imaging, coarse-grid solutions of partial differential equations due to computational complexity, etc. Moreover, sometimes 
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one may also intentionally sample partial information of the scientific data set as a straightforward data compression tech-
nique. As a result, it has become an important topic to reconstruct the original data set from regular or irregular samplings.

There are typically two ways to approach this problem. The first one is to use the underlying physics to infer the 
missing data [1–5]. The drawback is that such techniques are usually problem-specific and not generally applicable to similar 
problems in other fields of study. Signal and data processing techniques, on the other hand, usually do not require too 
much prior information of the governing physics. These models intend to fill in the missing information by the properties 
manifested by the sampled data themselves, while implicitly enforcing common structures from physical intuition in the 
regularization.

Many signal processing approaches to data interpolation have been studied in the context of image inpainting and 
seismic data interpolation. Popular interpolation models have been proposed through total variation [6,7], wavelets [8,9], and 
curvelets [10–12,1]. After the introduction of the nonlocal mean by Buades et al. in [13], patch-based techniques exploiting 
similarity and redundancy of local patches have been extensively studied for inpainting and reconstruction [14–16]. This 
also leads to a wide variety of sparse-signal models which assume that patches can be sparsely represented by atoms in a 
prefixed or learned dictionary [8,17]. Patch-based Bayesian models have also been proposed in image and data interpolation 
[18,19]. However, as reported in [18], some of the algorithms can only be applied to the interpolation of randomly selected 
samples, and fail to achieve satisfactory results for uniform grid interpolation. Moreover, most of the methods perform 
poorly when a significant amount of information (≥ 95%) is missing.

Recently, a low dimensional manifold model (LDMM) has been proposed for general image processing problems [20]. 
In particular, it achieved state-of-the-art results for image interpolation problems with a significant number of missing 
pixels. The main idea behind LDMM is that the patch manifold (to be explained in Section 2) of a real-world 2D image 
has a much lower intrinsic dimension than that of the ambient space. Based on this observation, the authors used the 
dimension of the patch manifold as a regularizer in the variational formulation, and the optimization problem is solved 
using alternating minimization with respect to the image and the manifold. The key step in the algorithm, which involves 
solving a Laplace–Beltrami equation over an unstructured point cloud sampling the patch manifold, is solved via either the 
point integral method [21] or the weighted graph Laplacian [22].

In this work, we apply LDMM to the interpolation of 2D and 3D scientific data sets from either regular or irregular sam-
plings, and demonstrate its superiority when compared to other methods. Moreover, we also compare the performance of 
LDMM as a sampling-based data compression technique to other standard compression methods. Unlike the other compres-
sion methods, sampling-based methods do not require access to the full data set. Although the results of sampling-based 
algorithms are generally inferior to standard compression methods, they have the advantage of easy implementation in the 
compression step, and they are also faster in the reconstruction step if only the reconstruction of a small portion of the data 
set is required. A useful by-product of this comparison is that the standard compression methods are implicitly compared 
against one another on a set of physically meaningful test cases that can be used for future benchmarks.

The rest of the paper is organized as follows. Section 2 reviews the low dimensional manifold model and justifies its 
application to scientific data interpolation through a dimension analysis. Section 3 outlines the detailed numerical imple-
mentation of LDMM with weighted graph Laplacian which was missing in [22]. A comparison of the numerical results 
on various scientific data interpolation and compression is reported in Section 4. Finally, we draw our conclusion in Sec-
tion 5.

2. Low dimensional manifold model

Low dimensional manifold model (LDMM) is a recently proposed mathematical image processing technique which per-
forms particularly well on natural image inpainting [20,23]. The main observation is that the intrinsic dimension of the 
patch manifold of a natural image is much smaller than that of the ambient Euclidean space. Therefore it is intuitive to use 
the dimension of the patch manifold as a regularizer to recover the degraded image. We argue that the same property holds 
true for scientific data sets. Throughout the entire paper, we present our analysis and algorithm for 3D scientific data sets. 
The formulation for 2D and higher dimensional data sets follows in a natural way.

2.1. Patch manifold and dimension analysis

Consider a 3D datacube f ∈ R
m×n×r . For any voxel x ∈ �̄ = {1,2, . . . ,m} × {1,2, . . . ,n} × {1,2, . . . , r},4 the patch P f (x)

is defined as a vector storing the data values in a 3D cube of size s1 × s2 × s3, with x being the first voxel of the 3D cube 
in the lexicographic order, i.e. x is in one particular corner of the cube.5 The patch set P( f ) of f is the collection of all 
patches:

P( f ) = {
P f (x) : x ∈ �̄

} ⊂ R
d, d = s1 × s2 × s3.

4 The notation � is reserved for the sampled subset of �̄.
5 One can also choose x to be the center of the cube, and the result will be similar. The reason is that the reconstruction is performed on patches instead 

of on voxels. This will be clear in Section 3.
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