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Many interesting astrophysical and atmospheric problems involve flows near the hydro-
static equilibrium state where the pressure gradient is balanced by the gravitational force. 
In this paper, we design high order well-balanced discontinuous Galerkin methods for 
the Euler equations with gravitation, which can preserve the discrete polytropic and 
isothermal hydrostatic balance states exactly. To achieve the well-balancedness, we propose 
to combine the numerical fluxes based on a generalized hydrostatic reconstruction, with 
an equilibrium state recovery technique and a novel source term approximation. Extensive 
one- and two-dimensional numerical examples are shown to demonstrate the performance 
of our well-balanced methods, and comparison with non-well-balanced results is included 
to illustrate the importance of maintaining the balance between pressure gradient and 
gravitational force numerically.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we design high order well-balanced discontinuous Galerkin (DG) methods for the solutions of the Euler 
equations with gravitation

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + pId) = −ρ∇φ,

Et + ∇ · ((E + p)u) = −ρu · ∇φ,

(1.1)

that preserve their steady state solutions exactly in the discrete sense. Here x ∈ Rd (d = 1, 2, 3) is the spatial variable, 
ρ , u, p denote the fluid density, the velocity, and the pressure, respectively. E = 1

2 ρ‖u‖2 + ρe (e is internal energy) is 
the non-gravitational energy which includes the kinetic and internal energy of the fluid. The operators ∇ , ∇· and ⊗ are 
the gradient, divergence and tensor product in Rd , respectively, and Id denotes the identity matrix. The source terms on 
the right hand side of the equations represent the effect of the gravitational force, and φ = φ(x) is the time independent 
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gravitational potential. To close this system, the pressure p is linked to the density ρ and the interval energy e through an 
equation of state, denoted by p = p(ρ, e). For example, the ideal gas law takes the form of

p = (γ − 1)ρe = (γ − 1)
(

E − ρ‖u‖2/2
)

, (1.2)

where γ is the ratio of specific heats. This ideal gas law is used in the numerical examples section, but the methods 
presented in this paper are applicable beyond the ideal gas equation of state.

Euler equations under gravitational fields play an important role in modeling many interesting astrophysical and at-
mospheric phenomena, with examples including the simulation of supernova explosions, climate modeling and numerical 
weather forecasting. In these applications, we often encounter nearly steady state flows, which are small perturbation of 
the hydrostatic equilibrium states arising from the balance of the flux term and gravitational source term in (1.1). Two 
well-known hydrostatic equilibriums states of the Euler equations under gravitation are the isothermal and the polytropic 
equilibria, which will be explained in detail in Section 2. One computational challenge in simulating these nearly steady 
flows comes from the imbalance of numerical approximations to these terms, which will lead to truncation error that may 
be comparable with the size of the physical perturbation. As a result, the numerical solution may either oscillate around 
the equilibrium or deviate from the correct approximation. To resolve this problem, one may need to use an extremely 
refined mesh, which increases the computational cost and can become quite burdensome in multi-dimensional simulations. 
Well-balanced methods are designed to preserve these steady states solutions exactly up to the machine accuracy, and can 
effectively capture these small perturbations well even on relatively coarse meshes.

Study of well-balanced methods has attracted many attention in the past decade, and many well-balanced methods have 
been designed in the literature. Most of them are proposed for the shallow water equations over a non-flat bottom topology, 
which is another prototypical example of hyperbolic conservation laws with source term. We refer the readers to [2,12,1,15,
21,31,26,30,29] and the references therein for some limited references in this context. Recently, some of these approaches 
have been extended to design well-balanced numerical methods for the Euler equations with gravitation. An early work can 
be found in [16], where the quasi-steady wave-propagation methods are applied to the Euler equations. Later, finite volume 
well-balanced methods have been proposed in [3] for the nearly hydrostatic flows in the numerical weather prediction. 
Gas-kinetic schemes have been extended to the multidimensional gas dynamic equations in [24,32,19], and well-balanced 
numerical methods were developed. Finite volume well-balanced schemes for the general hydrostatic equilibrium without 
any assumption of a thermal equilibrium are recently studied in [13,14]. Other related work can be found in [33,10,6]. The 
first high order version of well-balanced methods for the isothermal equilibrium of the Euler equations with gravitation is 
introduced in [28], based on a reformulation of the source term and a slightly modified weighted essentially non-oscillatory 
(WENO) reconstruction operator. The well-balanced approach based on reformulating the source term has been extended to 
DG methods in [17], to the nodal DG methods in [7], to the compact-reconstruction WENO methods for atmospheric flows 
in [11], and to the finite volume WENO methods in [18].

Another popular approach in designing well-balanced methods for the shallow-water equations is the hydrostatic recon-
struction idea, first proposed in [1] and later appearing in many well-balanced methods including some high order ones. 
Numerical flux based on hydrostatic reconstruction, combined with novel well-balanced source term approximation, is an 
important idea in designing well-balanced DG methods for the lake at rest steady state [27,30], and for the general moving 
equilibrium state of the shallow water equations [4,5,25]. In this paper, we plan to extend the hydrostatic reconstruction 
idea to investigate novel well-balanced DG methods for the polytropic equilibrium of the Euler equations with gravitation, 
which appears in most of these astrophysical applications. Their extension to the isothermal equilibrium state will also be 
described. Our well-balanced DG methods are build upon the first order methods in [13]. In [13], second order extension 
has also been presented, and our methods can be viewed as their extension to arbitrary high order methods in the DG 
setting. To achieve the well-balancedness, we proposed to combine the numerical fluxes based on hydrostatic reconstruc-
tion, with the equilibrium state recovery technique and a novel source term approximation. The proposed DG methods can 
also be viewed as a generalization of the methods designed for balancing the shallow water equations with moving water 
equilibrium in [25], and are very different from the existing two well-balanced DG methods in [17,7].

This paper is organized as follows. In Section 2, we present the one dimensional model and its steady state solutions. 
In Sections 3 and 4, our well-balanced DG methods for the polytropic hydrostatic steady states of the Euler equations 
under gravitational filed are presented. We start with one dimensional problem, and then extend the proposed method 
to multi-dimensional case. Section 5 contains extensive numerical simulation results to demonstrate the behavior of our 
well-balanced DG methods for one- and two-dimensional Euler equations under gravitational field, verifying high order 
accuracy, the well-balanced property, and good resolution for smooth and discontinuous solutions. Some conclusions are 
given in Section 6.

2. Mathematical model

In one spatial dimension, the Euler equations (1.1) reduce to the form of

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = −ρφx,

Et + ((E + p)u)x = −ρuφx,

(2.1)
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