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Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) 
simulation that achieves variance reduction by simulating the governing equations on 
a series of spatial (or temporal) grids with increasing resolution. Instead of directly 
employing the fine grid solutions, MLMC estimates the expectation of the quantity 
of interest from the coarsest grid solutions as well as differences between each two 
consecutive grid solutions. When the differences corresponding to finer grids become 
smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to 
compute the difference expectations, thus leading to a reduction in the overall work. This 
paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), 
where a low-rank approximation to the solution on each grid, obtained primarily based on 
coarser grid solutions, is used as a control variate for estimating the expectations involved 
in MLMC. Cost estimates as well as numerical examples are presented to demonstrate 
the advantage of this new MLCV approach over the standard MLMC when the solution of 
interest admits a low-rank approximation and the cost of simulating finer grids grows fast.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The use of uncertainty quantification as a tool to assess the prediction accuracy of simulation models of physical systems 
has been increasing at a rapid rate over the last decade. By accounting for the uncertainties of input data in models, such as 
initial conditions, boundary conditions, or other physical parameters, the objective is to establish the predictive capabilities 
of simulations by quantifying the uncertainty in the quantities of interest (QoI’s). To this end and within the probabilistic 
framework, several methods, e.g., polynomial chaos expansions [1–3] and stochastic collocation [4,5], have been developed 
and proven successful in various applications. However, it is known that the computational cost of these methods grows 
rapidly as a function of the number of random variables describing model uncertainties, a phenomenon referred to as curse 
of dimensionality.

An alternative class of techniques rely on the Monte Carlo (MC) simulation or its variants, where the statistics of the 
QoI are estimated using an ensemble of (random) realizations of the QoI. The cost of such estimations, while may be 
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prohibitive, is formally independent of the number of input variables. In details, let ξ = (ξ1, . . . , ξd) denote the d-vector of 
random variables, with joint probability density function ρξ (ξ), representing the uncertainty in the inputs. Let Q = Q (ξ)

denote a scalar-valued QoI depending on ξ and Q M its approximation obtained via simulation. The subscript M denotes the 
number of deterministic degrees of freedom, e.g., number of grid points in a finite element model, controlling the accuracy 
of Q M relative to Q . The goal is to approximate the statistics of Q , e.g., the mean of Q , E[Q ], using the realizations of Q M . 
Given a set of N samples of inputs, each denoted by ξ (i) and drawn according to ρξ (ξ), and the corresponding realizations 
of Q M , given by Q (i)

M = Q M(ξ (i)), the MC approximation of E[Q ] is

E[Q ] ≈ E[Q M ] ≈ Q̂ MC
M,N = 1

N

N∑
i=1

Q (i)
M . (1)

Following the notation in [6], Q̂ MC
M,N in (1) is the MC estimator of E[Q M ] using N samples of Q M with the Mean Square 

Error (MSE)

MSE(Q̂ MC
M,N ,E[Q ]) = 1

N
V[Q M ] + (E[Q M − Q ])2 , (2)

where V is the variance operator and MSE(Q̂ MC
M,N , E[Q ]) denotes the MSE of Q̂ MC

M,N with respect to E[Q ]. We note that, in 
this paper, the hat operator indicates the MC estimator of the corresponding expectation. In (2), the MSE is decomposed 
into the sampling error 1

N V[Q M ], controlled by the variance of Q M and the number of samples, and the discretization error

(E[Q M − Q ])2, which measures how closely the model simulates the true solution. As can be seen from (2), the sampling 
error decays slowly as a function of N , but with a rate that is independent of the dimension d, implying that the standard 
MC simulation does not formally suffer from the curse of dimensionality.

Aside from the necessary refinement in the model to reduce the discretization error, there are only two options to 
improve the MSE of an MC estimate: increasing the sample size N or using a variance reduction technique. Due to the cost 
incurred by the first option, it is more practical to consider the use of a variance reduction technique, such as importance 
sampling or control variates (CV) [7]. In particular, the CV approach considers a second quantity Z , such that it is correlated 
with Q M , is cheaper than Q M to evaluate, and whose expectation is either known or can be approximated with relatively 
small cost. Then a new variable,

W = Q M − θ(Z −E[Z ]),
is constructed that has the same mean as Q M , i.e., E[W ] = E[Q M ], thus suggesting the use of MC estimate of E[W ] as 
a proxy for E[Q M ]. In doing so, the gain is that, depending on the choice of θ , the MC estimator of E[W ] features a 
reduced MSE (or variance). Stated differently, a smaller number of W realizations, hence Q M realizations, are needed for a 
comparable MSE when CV is applied. For scenarios when Z is poorly correlated with Q M , a notable MSE reduction is not 
observed. If, in addition, the cost of estimating E[Z ] is large, it is likely that this CV will not result in a cost improvement 
over standard MC.

Multilevel Monte Carlo (MLMC), proposed in [8,9], is a generalization of CV, which constructs a sequence of control 
variates Z based on approximations of Q on a set of models that are cheaper to simulate than the one for Q M , hence the 
term multilevel. A common example of a cheaper model is to approximate Q on coarser grids with number of degrees of 
freedom smaller than M . While the notion of levels can go beyond a grid-based construction, we limit the scope of this 
study to such an approach. For the interest of a simpler introduction, we delay the full presentation of MLMC to Section 2, 
and instead focus on the two-level formulation next.

Taking θ = 1 and Z = Q m , with m < M , to be the QoI approximated from a coarser grid than that of Q M , the two-level 
MLMC variable is given by W = Q M − (Q m −E[Q m]) = E[Q m] + (Q M − Q m), with expected value

E[W ] = E[Q m] +E[Q M − Q m] (3)

= E[Q M ].
To approximate E[W ], or equivalently E[Q M ], MC is applied independently to the two expectations in the right-hand-side 
of the first equation in (3),

Ŵ = 1

Nm

Nm∑
i=1

Q (i)
m + 1

NM

NM∑
i=1

(Q (i)
M − Q (i)

m ). (4)

As compared to the standard MC estimator of E[Q M ] given in (1), the estimation of E[Q m] in (4) also involves drawing 
samples of Q m , which are less expensive. More importantly, when Q m is close to Q M , estimating E[Q M − Q m] requires 
fewer samples of Q M , as (Q M − Q m) features a smaller variance. In practice, depending on the cost of simulating the two 
models as well as the variances of Q m and (Q M − Q m), the numbers of samples of Q m , Nm , and Q M , NM , are selected such 
that the overall estimation cost, for a given accuracy, is minimal. MLMC expands upon this concept by including multiple 
levels, as delineated in Section 2.
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