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Strict pollutant emission regulations are pushing gas turbine manufacturers to develop de-
vices that operate in lean conditions, with the downside that combustion instabilities are 
more likely to occur. Methods to predict and control unstable modes inside combustion 
chambers have been developed in the last decades but, in some cases, they are computa-
tionally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensi-
tivity information at a low computational cost. This paper introduces adjoint methods and 
their application in wave-based low order network models, which are used as industrial 
tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of in-
terest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem 
is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities 
of the system to small modifications. Sensitivities to base-state modification and feedback 
devices are presented. Second, a more general case with non-zero Mach number, a mov-
ing flame front and choked outlet, is presented. The influence of the entropy waves on the 
computed sensitivities is shown.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The F-1 engines used in the Saturn V rockets were the subject of an expensive, but ultimately successful, attempt to 
mitigate combustion oscillations. More than 3200 full-scale tests were required [1]. Today, this cost would be prohibitive, 
which demonstrates the need for robust analytical tools to predict the onset of thermoacoustic oscillations and methods to 
control them.

Network models using wave-based approaches have been widely used in thermoacoustics [2–4]. As described by Dowling 
and Stow [5] a thermoacoustic network is a collection of acoustic elements such as ducts, plenums, combustors, boundaries, 
and a combustion zone, which is normally assumed to be compact. The elements’ mean flow quantities are often considered 
to be homogeneous in each network element. Both mean flow quantities and fluctuations are related across elements by 
jump relations for the mass, momentum, and energy.

The primary objective of combining adjoint methods with stability analysis is to calculate the eigenvalues and their 
sensitivities to small modifications to the system, which can be caused by a variation of a parameter or the introduction of 
a feedback device (see e.g. [6,7]).
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In thermoacoustics, nonlinear adjoint looping was used by Juniper [8] to find the smallest initial perturbation that 
could cause triggering of self-sustained oscillations in an electrically heated Rijke tube. The first application of adjoints 
in eigenvalue sensitivity analysis was performed by Magri and Juniper [9], who modelled a time-delayed thermoacoustic 
system in low Mach number conditions. Using Galerkin methods, they studied the eigenvalue sensitivity to (i) any of the 
parameters of the system (base state sensitivity) and (ii) generic passive control devices (feedback sensitivity, also known 
as structural sensitivity). One outcome was finding that a fine mesh in the second half of the tube would help to stabilize 
the system. This was tested experimentally by Rigas et al. [10], who measured the growth rate and the frequency shift in 
the presence of the passive control device. The growth rate shift was predicted accurately by adjoint analysis applied to the 
model. There was, however, some discrepancy in the frequency shift, which was due to limitations of the thermoacoustic 
model, rather than the sensitivity analysis.

Wave-based methods produce a nonlinear eigenvalue problem of the form [11–13]:

L(s,p)q = 0, (1)

where s is the eigenvalue and p are the parameters of the system such as the reflection coefficients, time delays and heat 
source parameters. The adjoint function can be defined by means of a bilinear form [·, ·] such that for arbitrary a, b:

[a, Lb] − [
L+a,b

]= constant, (2)

where L+ is the adjoint operator. An operator L is said to be normal if its eigenfunctions q are orthogonal, or equivalently, 
if LL+ = L+L. Clearly, an operator is normal if it is self-adjoint, i.e. L+ = L. The equations governing duct acoustics, without 
considering boundary conditions, obey the wave equation and are self-adjoint (see e.g. [14]). Nicoud et al. [15] demonstrated 
that thermoacoustic eigenfunctions are not orthogonal to each other, meaning that thermoacoustic systems are non-normal. 
Wieczorek et al. [16] showed that non-normal effects in thermoacoustics increase with the mean flow velocity. Therefore, 
with a mean flow, thermoacoustic systems are expected to be even less normal.

Depending on the sensitivity information desired, the operator, L, needs to be perturbed. Two different types of pertur-
bation are defined:

• when the parameters p are perturbed, the resulting sensitivity is named base state sensitivity;
• when the system is perturbed by adding a small feedback mechanism, which is linearly proportional to one of the 

state variables of vector q, the resulting sensitivity is called feedback sensitivity (also known as structural sensitivity in 
Giannetti and Luchini [17] and Magri and Juniper [9]). Feedback mechanisms that cause mass addition, momentum 
addition, and/or energy addition are considered.

In this paper we extend adjoint-based sensitivity analysis to wave-based thermoacoustic models, which produce a nonlinear 
eigenvalue problem. Throughout this study, we focus on first-order perturbations. Higher-order perturbation studies have 
been performed by Magri [12], Magri et al. [13,18], Mensah and Moeck [19], Silva et al. [20] but are not considered further 
here. First, we consider a zero-Mach number thermoacoustic system to show the symmetries between the direct and adjoint 
eigenfunctions, which are harder to see when the mean flow and entropy waves are included. The sensitivities are calculated 
using both continuous and discrete adjoint approaches, and the computational/physical advantages and disadvantages of 
these two methods are discussed. In the second part of this paper, the methods are extended to include a mean flow, 
a moving flame front, and a choked outlet in a more realistic combustor model. The paper ends with a concluding discussion.

2. Thermoacoustic model with zero mean flow

A one dimensional network model composed of a duct of length Ln with a compact heat source located at x = b is 
considered. The model assumes homogeneous properties along each segment, hence the heat source splits the domain into 
two segments as shown in Fig. 1. Each segment is governed by a similar set of equations, which are connected by the jump 
conditions established by the heat source.

2.1. Governing equations

The governing equations for the ducts of the thermoacoustic system are given by the continuity, momentum, and the 
energy equations, neglecting viscosity and heat conduction:
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