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We present an efficient numerical algorithm to approximate the statistical moments of 
stochastic problems, in the presence of models with different fidelities. The method 
extends the multi-fidelity approximation method developed in [18,26]. By combining the 
efficiency of low-fidelity models and the accuracy of high-fidelity models, our method 
exhibits fast convergence with a limited number of high-fidelity simulations. We establish 
an error bound of the method and present several numerical examples to demonstrate the 
efficiency and applicability of the multi-fidelity algorithm.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, many efforts have been devoted to the development of efficient numerical methods for uncertainty 
quantification (UQ). In practical computations, the most widely used method is stochastic collocation, as it is nonintrusive 
sampling based and allows one to use existing deterministic codes. Unfortunately, this number of deterministic simulations 
required by accurate stochastic collocation methods grows very rapidly for high dimensional random inputs — the curse 
of dimensionality. For large scale simulations, the computational cost can become prohibitive, as the computation of each 
individual deterministic sample is highly costly. Many options have been investigated to tackle this challenge. For example, 
methods that explore more efficient sampling strategies using sparse grids, adaptivity, smoothness or sparsity of the solu-
tions, cf. [25,2,1,11,5,8,9,12,16,17,19,20,23]. There is also a recent surge of interest in multilevel Monte Carlo method, which 
uses the hierarchy models by physical space refinement to achieve variance reduction in random space, cf., [14,4,3,7,21]. 
Other approaches to achieve variance reduction have also been presented, cf., [6,22].

In this paper we focus primarily on the computation of solution statistics using models with different fidelities. In 
particular, we focus on the case with one high-fidelity model and one low-fidelity model. Here, the high-fidelity model is 
able to produce high resolution solution to the underlying physical problem. The simulation cost is high, thus preventing 
us from using the standard sampling strategy (Monte Carlo, sparse grids, etc.). The low-fidelity model, on the other hand, 
is not highly accurate but can capture the essential behavior of the underlying problem. It is computationally cheap and 
can be sampled a large number of times. Typically, the low-fidelity models are constructed using simplified physics and/or 
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much coarser discretization. Examples are abundant in many problems, for example, the fine-scale versus the coarse grained 
models in multi-scale problems.

We present an efficient stochastic collocation algorithm for computing solution statistics using a high-fidelity model 
and a low-fidelity model. A distinct feature of our method is that it “seperate” the low-fidelity solutions and high-fidelity 
solutions. It uses the low-fidelity solutions, which consist of a large number of samples, to construct a best approximation 
of the target solution statistics (mean, variance, etc.), and then apply the best approximation to the high-fidelity samples. 
Our method is essentially a “learning” algorithm, where the low-fidelity samples are used to “train” the best approximation. 
It is different from most of the existing methods, which usually achieve improved performance via variance reduction or 
by exploring the hierarchical structure (if available) of the models. The current method is an extension of the method 
developed in [18,26], where the same training idea was first proposed and used to predict the solutions at arbitrary sample 
locations. A straightforward way to use the technique of [18,26] to compute solution statistics is to compute the bi-fidelity 
solutions at every sample points and then compute the statistics. Although computing each bi-fidelity solution is efficient, 
computing such solutions at a large number of samples becomes expensive. The major contribution of this paper is to 
present a mathematically equivalent algorithm that directly computes the solution statistics and bypasses the step of a large 
number of bi-fidelity computations. Here we show that the method can be highly efficient in approximating the statistics 
(mean, variance, etc.) of the underlying stochastic problem. We establish an error bound of the method and use extensive 
numerical examples to demonstrate its performance. In the examples with varying multiple dimensions, accuracy solutions 
can be obtained by O (10) number of high-fidelity simulation samples.

2. Problem setup

Let w be the solution of a system of governing equations in a bounded spatial domain D ⊂ R
� , � = 1, 2, 3, and a random 

parameter domain I Z ⊆ R
d , d ≥ 1. For general discussion we do not assume any specific form of the governing equations. 

We are interested in a quantity-of-interest (QoI), which is a function of the solution w , i.e.,

v = q(w) : D̄ × I Z →R. (2.1)

Hereafter we denote x = (x1, . . . , x�) the spatial variable and z = (z1, . . . , zd) the random variable. Let ρ : Iz → R
+ be the 

probability distribution function of z. We are interested in evaluating the statistical average of the QoI, ν : D̄ → R,

ν(·) = E[v] =
∫

v(·, z)ρ(z)dz. (2.2)

For example, when v = wk , k ≥ 1, it stands for the k-th moment of the solution.

2.1. Numerical approximations

For numerical approximation, we seek an approximate solution u in a linear subspace V for any fixed random variables,

u : Iz → V . (2.3)

Obviously, the choice of the linear subspace V depends on the chosen numerical method. We assume that the numerical 
method is deterministic and satisfies

u(·, z) ≈ v(·, z), ∀z ∈ I Z ,

in a proper norm in the physical space.
Since the solution dependence in the random space can also be complex, the mean operator E in (2.2) also needs to 

be approximated. In this paper we focus on linear sampling based approximation, which is the predominant approach in 
practice. Let � = {z1, . . . , zm} ⊂ I Z be a set of samples, then for any integrable function f : I Z →R we define

Ẽ[ f ;�] :=
m∑

i=1

wi f (zi) ≈ E[ f ], (2.4)

where wi is the weight at the sample zi , for i = 1, . . . , m. For example, the standard Monte Carlo method has an uniform 
weight wi ≡ 1/m, whereas for most cubature rules the weights are non-uniform. Hereafter we assume the weights satisfy

m∑
i=1

wi = 1, ‖w‖�2 < ∞, (2.5)

where ‖w‖�2 is the 2-norm of w = (w1, . . . , wm). Although it is highly desirable to have wi > 0, this is not the case for 
many cubature rules.

With the approximations in both the physical space and the random space, we have

μ(·) = Ẽ[u;�] ≈ ν(·) (2.6)

as an approximation to the true statistical average (2.2).
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