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For more than two centuries, solutions of differential equations have been obtained 
either analytically or numerically based on typically well-behaved forcing and boundary 
conditions for well-posed problems. We are changing this paradigm in a fundamental 
way by establishing an interface between probabilistic machine learning and differential 
equations. We develop data-driven algorithms for general linear equations using Gaussian 
process priors tailored to the corresponding integro-differential operators. The only 
observables are scarce noisy multi-fidelity data for the forcing and solution that are not 
required to reside on the domain boundary. The resulting predictive posterior distributions 
quantify uncertainty and naturally lead to adaptive solution refinement via active learning. 
This general framework circumvents the tyranny of numerical discretization as well as the 
consistency and stability issues of time-integration, and is scalable to high-dimensions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Nearly two decades ago a visionary treatise by David Mumford anticipated that stochastic methods will transform pure 
and applied mathematics in the beginning of the third millennium, as probability and statistics will come to be viewed as 
the natural tools to use in mathematical as well as scientific modeling [1]. Indeed, in recent years we have been witnessing 
the emergence of a data-driven era in which probability and statistics have been the focal point in the development of dis-
ruptive technologies such as probabilistic machine learning [2,3]. Only to verify Mumford’s predictions, this wave of change 
is steadily propagating into applied mathematics, giving rise to novel probabilistic interpretations of classical deterministic 
scientific methods and algorithms. This new viewpoint offers an elegant path to generalization and enables computing with 
probability distributions rather than solely relying on deterministic thinking. In particular, in the area of numerical analysis 
and scientific computing, the first hints of this paradigm shift were clearly manifested in the thought-provoking work of 
Diaconis [4], tracing back to Poincaré’s courses on probability theory [5]. This line of work has recently inspired resurgence 
in probabilistic methods and algorithms [6–8] that offer a principled and robust handling of uncertainty due to model in-
adequacy, parametric uncertainties, and numerical discretization/truncation errors. In particular, several statistical inference 
techniques have been reported in [9–12] for constructing probabilistic time-stepping schemes for systems of ordinary dif-
ferential equations (e.g., systems arising after a partial differential equation is discretized in space). In the same spirit, the 
work of [13–16] has highlighted the possibility of solving linear partial differential equations and quantifying parameter and 
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discretization uncertainty using Gaussian process priors. These developments are defining a new area of scientific research 
in which probabilistic machine learning and classical scientific computing coexist in unison, providing a flexible and general 
platform for Bayesian reasoning and computation. In this work, we exploit this interface by developing a novel Bayesian 
inference framework that enables learning from (noisy) data and equations in a synergistic fashion.

2. Problem setup

We consider general linear integro-differential equations of the form

Lxu(x) = f (x), (1)

where x is a D-dimensional vector that includes spatial or temporal coordinates, Lx is a linear operator, u(x) denotes an 
unknown solution to the equation, and f (x) represents the external force that drives the system. We assume that f L := f is 
a complex, expensive to evaluate, “black-box” function. For instance, f L could represent force acting upon a physical system, 
the outcome of a costly experiment, the output of an expensive computer code, or any other unknown function. We assume 
limited availability of high-fidelity data for f L , denoted by {xL, yL}, that could be corrupted by noise εL , i.e., yL = f L(xL) +εL . 
In many cases, we may also have access to supplementary sets of less accurate models f�, � = 1, . . . , L − 1, sorted by 
increasing level of fidelity, and generating data {x�, y�} that could also be contaminated by noise ε� , i.e., y� = f�(x�) + ε� . 
Such data may come from simplified computer models, inexpensive sensors, or uncalibrated measurements. In addition, 
we also have a small set of data on the solution u, denoted by {x0, y0}, perturbed by noise ε0, i.e., y0 = u(x0) + ε0, 
sampled at scattered spatio-temporal locations, which we call anchor points to distinguish them from boundary or initial 
values. Although they could be located on the domain boundaries as in the classical setting, this is not a requirement in 
the current framework as solution data could be partially available on the boundary or in the interior of either spatial or 
temporal domains. Here, we are not primarily interested in estimating f . We are interested in estimating the unknown 
solution u that is related to f through the linear operator Lx . For example, consider a bridge subject to environmental 
loading. In a two-level of fidelity setting (i.e., L = 2), suppose that one could only afford to collect scarce but accurate 
(high-fidelity) measurements of the wind force f2(x) acting upon the bridge at some locations. In addition, one could also 
gather samples by probing a cheaper but inaccurate (low-fidelity) wind prediction model f1(x) at some other locations. How 
could this noisy data be combined to accurately estimate the bridge displacements u(x) under the laws of linear elasticity? 
What is the uncertainty/error associated with this estimation? How can we best improve that estimation if we can afford 
another observation of the wind force? Quoting Diaconis [4], “once we allow that we don’t know f , but do know some 
things, it becomes natural to take a Bayesian approach”.

3. Solution methodology

The basic building blocks of the Bayesian approach adopted here are Gaussian process (GP) regression [17,18] and auto-
regressive stochastic schemes [19,21]. This choice is motivated by the Bayesian non-parametric nature of GPs, their analytical 
tractability properties, and their natural extension to the multi-fidelity settings that are fundamental to this work. In par-
ticular, GPs provide a flexible prior distribution over functions, and, more importantly, a fully probabilistic workflow that 
returns robust posterior variance estimates which enable adaptive refinement and active learning [22–24]. The framework 
we propose is summarized in Fig. 1 and is outlined in the following.

Inspired by [19,21], we will present the framework considering two-levels of fidelity (i.e. L = 2), although generalization 
to multiple levels is straightforward. Let us start with the auto-regressive model u(x) = ρu1(x) + δ2(x), where δ2(x) and 
u1(x) are two independent Gaussian processes [17–19,21] with δ2(x) ∼ GP(0, g2(x, x′; θ2)) and u1(x) ∼ GP(0, g1(x, x′; θ1)). 
Here, g1(x, x′; θ1), g2(x, x′; θ2) are covariance functions, θ1, θ2 denote their hyper-parameters, and ρ is a cross-correlation 
parameter to be learned from the data (see Sec. 3.1). Then, one can trivially obtain

u(x) ∼ GP(0, g(x, x′; θ)), (2)

with g(x, x′; θ) = ρ2 g1(x, x′; θ1) + g2(x, x′; θ2), and θ = (θ1, θ2, ρ). The key observation here is that the derivatives and 
integrals of a Gaussian process are still Gaussian processes. Therefore, given that the operator Lx is linear, we obtain

f (x) ∼ GP(0,k(x, x′; θ)), (3)

with

k(x, x′; θ) = LxLx′ g(x, x′; θ). (4)

Similarly, we arrive at the auto-regressive structure f (x) = ρ f1(x) +γ2(x) on the forcing, where γ2(x) =Lxδ2(x), and f1(x) =
Lxu1(x) are consequently two independent Gaussian processes with γ2(x) ∼ GP(0, k2(x, x′; θ2)), f1(x) ∼ GP(0, k1(x, x′; θ1)). 
Furthermore, for � = 1, 2, k�(x, x′; θ�) =LxLx′ g�(x, x′; θ�).
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