
Journal of Visual Languages and Computing 42 (2017) 13–22

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

An effective and efficient approximate two-dimensional dynamic

programming algorithm for supporting advanced computer vision

applications

Alfredo Cuzzocrea

a , ∗, Enzo Mumolo

b , Giorgio Mario Grasso

c , Gianni Vercelli d

a DIA Department, University of Trieste and ICAR-CNR, Italy
b DIA Department, University of Trieste, Italy
c CSECS Department, University of Messina, Italy
d DIBRIS Department, University of Genova, Italy

a r t i c l e i n f o

Article history:

Received 7 January 2017

Accepted 11 July 2017

Available online 2 August 2017

Keywords:

Two-dimensional dynamic programming

CUDA platform

Computer vision

Intelligent systems

a b s t r a c t

Dynamic programming is a popular optimization technique, developed in the 60’s and still widely used

today in several fields for its ability to find global optimum. Dynamic Programming Algorithms (DPAs) can

be developed in many dimension. However, it is known that if the DPA dimension is greater or equal to

two, the algorithm is an NP complete problem. In this paper we present an approximation of the fully

two-dimensional DPA (2D-DPA) with polynomial complexity. Then, we describe an implementation of the

algorithm on a recent parallel device based on CUDA architecture. We show that our parallel implemen-

tation presents a speed-up of about 25 with respect to a sequential implementation on an Intel I7 CPU.

In particular, our system allows a speed of about ten 2D-DPA executions per second for 85 × 85 pixels

images. Experiments and case studies support our thesis.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we describe an approximate Two-Dimensional Dy-

namic Programming Algorithm (2D-DPA) running on a CUDA de-

vice. Dynamic programming (DP), based on the Bellman’s Principle

of Optimality [1] , is a fast, elegant method for finding the global

solution to optimization problems. What characterizes a problem

suitable for dynamic programming is that solutions to these prob-

lems can be formulated as a sequence of simpler problems, and the

global optimum is obtained as a sequence of local optima. A clas-

sic example may be that of finding the length of a shortest path

in a directed graph that has no cycles. Another classical example

is that of sequence alignment. Generally-speaking, computer vision

applications are emerging trends for such a context, and, recently,

the research community has devoted a lot of attention to this topic

(e.g., [2–11]).

DP has been applied to various tasks in pattern recognition and

computer vision [12,13] . Nowadays, DP is considered a classic opti-

mization method and ever though there are many other optimiza-

tion techniques available, many researchers still choose DP in their

∗ Corresponding author.

E-mail addresses: alfredo.cuzzocrea@dia.units.it (A. Cuzzocrea), mumolo@units.it

(E. Mumolo), gmgrasso@unime.it (G.M. Grasso), gianni.vercelli@unige.it (G. Vercelli).

optimization problems because of its conciseness, versatility, and

ability to obtain globally optimal solution. Actually, DP is consid-

ered an ideal technique for solving a wide variety of discrete op-

timization problems such as scheduling, string editing, packaging,

and inventory management. Of the recent application of DP we can

mention tracking [14] , stereo [15,16] , and elastic image matching

[17] problems. Elastic matching is a typical application of 2D-DPA.

DPA was originally developed as a continuous optimization

method to obtain the solution efficiently [1] . Angel [18] used ana-

lytical DP to smooth interpolated data. Serra and Berthod [19] and

Munich and Perona [20] used it for nonlinear alignment of one-

dimensional patterns. Recently, Uchida et al. [21] used it in ob-

ject tracking. DP matching (and its stochastic extension, i.e. Hid-

den Markov Models) is a classical technique for speech recognition

[22] and for on-line character recognition [23] .

Sequential 1D-DP matching algorithms have been extended to

a two-dimensional one by many authors. Truly two-dimensional

elastic image matching have been described in [24,25] , but the

authors have encountered the inherent NP-hardness of the prob-

lem [26] . Because of this computational intractability, practical DP-

based elastic image matching algorithms employ various approx-

imation strategies, the most popular of which is the limitation

of matching flexibility, as the pseudo 2D elastic matching algo-

rithm described in [27] . Another approximation strategy is the

http://dx.doi.org/10.1016/j.jvlc.2017.07.002

1045-926X/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jvlc.2017.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jvlc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2017.07.002&domain=pdf
mailto:alfredo.cuzzocrea@dia.units.it
mailto:mumolo@units.it
mailto:gmgrasso@unime.it
mailto:gianni.vercelli@unige.it
http://dx.doi.org/10.1016/j.jvlc.2017.07.002

14 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

partial omission of the mutual dependency between 4-adjacent

pixels (e.g., the tree representation in [28]). Other approximations

consist in the introduction of pruning and coarse-to-fine strategies

[29] , at the cost of global optimality. Notwithstanding these strate-

gies, there is currently no practical DP algorithm that can provide

both globally optimal and truly two-dimensional elastic matching.

All the conventional DP-based elastic matching algorithms used

DP as a combinatorial optimization method. In fact a recent sur-

vey [13] reported only combinatorial (i.e., discrete) DP algorithms.

Even if the DP optimization problem was originally formulated as

a continuous variational problem, it has been discretized and then

solved by DP as a combinatorial optimization problem [12] .

The paper is organized as follows. Section 2 reports some

other CUDA implementations of various DPA based applications.

Section 3 describes the Dynamic Programming Algorithms, both in

one and two dimensional formulations. It has been shown that

the implementation of 2D-DPA has an exponential complexity,

therefore in Section 4 we describe an approximation of the two-

dimensional algorithm with polynomial complexity. In Section 5 ,

we provide general architecture and functionalities of the CUDA

platform. Section 6 focuses the attention on the CUDA-based im-

plementation of approximate DPA. Section 7 reports experiments

showing the benefits that derive from our proposed algorithm. In

Section 8 , we report a complete case study and related experimen-

tal results obtained from the application of the algorithm to fin-

gerprint verification. Finally, in Section 9 , we report concluding re-

marks and future work.

2. Related work

In this Section, we provide an overview of state-of-the-art pro-

posals related to our research. Since the sequential implementation

of various types of DPA has high computational demand, many au-

thors implemented the algorithm on Graphics Processing Devices.

Two issues have been mainly considered: how to find the best way

to parallelize the DPA itself and how to parallelize the problem

which has to be solved with DPA.

Many problems have been solved with DPA. The most popu-

lar are Stereo Matching in stereo vision, Elastic Matching of im-

ages, or various discrete numerical calculus problems. In 2007, a

Dynamic Programming-based low density real-time Stereo Match-

ing was implemented on an ATI Radeon X 800, an early GPU device.

They obtained a frame rate from 10 to 20 fps [30] .

In 2009, Xiao et al. address the problem of mapping DPA on

Graphics Processing Units . They propose a fine-grained paralleliza-

tion of a single instance of the algorithm that is mapped to the

GPU. Steffen et al. [31] describe in 2010 an implementation, on

a GTX 280, of a numerical framework, called Algebraic Dynamic

Programming , for encoding a broad range of optimization prob-

lems. Depending on the application, they report speed ups rang-

ing from about 6 to about 25. In the same year, Congote et al.

[32] describe the implementation of a Dense Stereo Matching algo-

rithm based on Dynamic Programming to recover depth map from

two-dimensional images using dynamic programming. They used

a number of GPU’s available in that year for a parallel implemen-

tation of the dynamic programming based algorithm. The sequen-

tial implementation was performed with an Intel Pentium proces-

sor E 2180. They found a speed-up of about 16 between the two

devices. Stivala et al. [33] published in 2010 a paper showing how

to parallelize any DPA on a shared memory multi-core computer

by means of a shared lock-free hash table, via starting multiple

threads that compute the DP recursion in a top-down fashion and

memorizing the result in a shared lock-free hash table.

In 2011, Wu et al. [34] present the GPU acceleration of an im-

portant category of DP problems, called Non-Serial Polyadic Dy-

namic Programming . Since in these problems the parallelism level

varies significantly in different stages of computation, they ad-

justed the thread-level parallelism in mapping a NPDP problem

onto the GPU. They report a speed up of about 13 over the pre-

viously published GPU algorithm. Nishida et al. in 2012 solved an

optimization problem with a known dynamic programming solu-

tion on a NVIDIA GeForce GTX 580. The problem was the computa-

tion of the optimal polygon triangulation of a convex polygon with

minimum total weight. The algorithm they published in [35] at-

tained a very high speed up factor of about 250.

3. One- and two-dimensional DPA

In this Section, we focus the attention on one- and two-

dimensional DPA. A popular way to describe One-Dimensional Dy-

namic Programming Algorithms (1D-DPA) is by means of the Edit

Distance [36] . The Edit Distance, which finds applications in bio-

informatics [37] , natural language processing [38] and spoken-

word recognition [22] , is a way to measure the similarity of two

strings or, in other words, to align the two strings. In the follow-

ing description we extend the Edit algorithm to the comparison

of one-dimensional sequences, similar to the comparison between

spoken words [22] .

Given two one-dimensional sequences, A = (a 1 , a 2 , . . . , a i , . . . ,

a N) and B = (b 1 , b 2 , . . . , . . . , b j , . . . b M

) , the mapping of one se-

quence to the other is represented by a path M

′ which starts from

cell (1, 1) to cell (N, M). The path is formed by a number of points

so that each point k of the path corresponds to a couple of coor-

dinates, M k = (i k , j k) . A distance between the two sequences can

be defined by the sum of the local distances between the ele-

ments of the sequences, a i , b j , computed along a path, namely: ∑ | M

′ |
k =1

∥∥a i k − b j k

∥∥, where | M

′ | is the length of the path M

′ . Clearly,

there exists a path along which the cumulative distance is mini-

mum. In this case the cumulative distance is the distance between

the two sequences:

D (A, B) =

min

M

′
∑ | M

′ |
k =1

d(M

′
k
)

| M

′ |

=

min

M

′
∑ | M

′ |
k =1

d(i k , j k)

| M

′ | =

min

M

′
∑ | M

′ |
k =1

∥∥a i k − b j k

∥∥
| M

′ | (1)

It is worth noting that the factor at the denominator is needed

to normalize the distance against different lengths of the optimum

path, and it is needed when Eq. (1) is used to measure the distance

between images.

By Dynamic Programming, the optimization problem of (1) is

solved by updating the cumulative distance D (i, j) at each point

of the A − B space using the recursion described in Eq. (2) , which

performs the optimal principle of DP.

D (i, j) = min

{

D (i − 1 , j) + d(i, j)
D (i − 1 , j − 1) + 2 d (i, j)
D (i, j − 1) + d (i, j)

(2)

where D (1 , 1) = 2 d(1 , 1) . The DP recursion described in Eq. (2) is

represented by in Fig. 1 .

After examination of the A − B space, Eq. (1) becomes Eq. (3) :

D (A, B) =

D (N, M)

N + M

(3)

where D (N, M) is the cumulative distance at the point (N, M), and

the fact that the length of the optimum path is N + M is due to the

weight of 2 on the diagonal move. It is important to note that M

′
which corresponds to the minimum cumulative distance D (N, M)

is the optimal map between A and B and can be used to align one

sequence on the other. This operation is called warping. We can

Download English Version:

https://daneshyari.com/en/article/4968148

Download Persian Version:

https://daneshyari.com/article/4968148

Daneshyari.com

https://daneshyari.com/en/article/4968148
https://daneshyari.com/article/4968148
https://daneshyari.com

