
Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Iconic languages: Towards end-user programming of mobile applications

Rita Francese⁎, Michele Risi, Genoveffa Tortora

Department of Computer Science, University of Salerno, Italy

A R T I C L E I N F O

Keywords:
Visual languages
Mobile development
Iconic languages
Visual programming

A B S T R A C T

After tracing the steps that led to the current generation of iconic languages starting from the original idea
of S.K. Chang, we describe an iconic language, named MicroApp, for modeling pervasive mobile applications
directly on the mobile device. MicroApp exploits generalized icons for composing mobile applications: services
are represented by icons and are composed of adopting colors for representing data-flow. We also qualitatively
evaluate the visual environment that implements this iconic language.

1. Introduction

Pictorial representations may be an effective communication means
because they exploit the powerful and highly parallel human visual
system [1], which is able to get and efficiently process images. Indeed,
around a quarter of the human brain is devoted to vision, more than all
the combination of the other senses [2]. Visually represented informa-
tion may also easier to remember, due to the picture superiority effect
[3]. Visual communication may be more intuitive for humans than
textual one, but not all the visual representations are useful for human
beings [4]. In addition, visual communication may be more ambiguous
than textual one [5]. Thus, Computer Science researchers started to
investigate whether humans can be facilitated in communicating with a
computer through images rather than by using text.

In 1973, Xerox proposed the Alto personal computer PARC,1 the
first computer offering a bitmapped screen, the desktop metaphor and
a graphical user interface.

S.K. Chang was one of the leading proponents of the research area
of Visual Languages, whose history started in 1983. Thanks to the
advent of bitmap screens and pointing devices there was the need of
having a forum where the necessary metaphors were investigated to
provide more user friendly interactions between man and computers.
In Chicago, 1983, at the IEEE Workshop on Languages for Automation
the papers [6,7] were presented. There, the meeting of these two
research groups put the bases of the first IEEE Symposium on Visual
Languages,2 1984, Hiroshima, Japan. The research objective was to
make the computer accessible to a wider range of people, thanks to the
growing diffusion of bitmap-based video technologies. Together with
S.K. Chang there were also Ichikawa, Jungert, Levialdi and Tortora.
Since then, researchers have been interested in determining whether

and how the computer can be easily used to transmit, display,
manipulate and retrieve information in terms of images [8–14].
Another important issue has been to evaluate whether the adoption
of a visual language provides usability benefits for target users, making
users more productive [15].

This paper traces the evolution of visual languages and, more
specifically, of iconic languages towards their adoption for supporting
mobile software development. Thus, we summarize the main charac-
teristics of iconic languages and then we propose an application of
them, the MicroApp iconic language [16–18], enabling an end-user to
compose mobile applications using a service-oriented approach. This
language has been designed to be properly used directly on the mobile
device by exploiting a touch-based interface for composing services
represented by icons. We conducted a qualitative evaluation of the
proposed approach, named MicroApp Generator [17], aiming at
collecting the user perceptions when it is used for generating new
mobile applications or reusing existing apps.

The paper is structured as follows: Section 2 introduces the main
concepts related to visual languages and briefly summarizes the first
steps of the research in the iconic language area, while Section 3
proposes an iconic language for the modeling of mobile applications.
Section 4 describes the qualitative evaluation design and reports the
obtained results. Finally, Section 5 concludes the paper by addressing
also future scenarios for iconic languages.

2. Background

What is a Visual Language (VL)? There exist several definitions with
different meanings. A VL is a language making a systematic use of
visual expressions (e.g., icons, drawings or gestures) to convey a

http://dx.doi.org/10.1016/j.jvlc.2016.10.009
Received 21 December 2015; Received in revised form 31 May 2016; Accepted 14 October 2016

⁎ Corresponding author.
E-mail addresses: francese@unisa.it (R. Francese), mrisi@unisa.it (M. Risi), tortora@unisa.it (G. Tortora).

1 https://en.wikipedia.org/wiki/History_of_the_graphical_user_interface#Xerox_PARC
2 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=218

Journal of Visual Languages and Computing 38 (2017) 1–8

Available online 11 November 2016
1045-926X/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/1045926X
http://www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2016.10.009
http://dx.doi.org/10.1016/j.jvlc.2016.10.009
http://dx.doi.org/10.1016/j.jvlc.2016.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.10.009&domain=pdf

meaning in a formal way [8].
While textual information is linear (one-dimensional), visual re-

presentation is multi-dimensional.
The objects to be dealt with by a VL can be inherently visual, such

as pictures, or inherently non-visual but with imposed visual repre-
sentation, such as arrays, stacks, and queues. In the latter case, a visual
representation is associated with these objects to get a more under-
standable man–machine interface. For further details see [8].

Visual Programming Languages (VPLs) are VLs used to program
visually [19]. They are characterized by programming constructs and
rules which are visually represented. Their aim is to enable the users to
program by interacting with a computer through visual representa-
tions.

VLs are also largely adopted in data visualization in general, and,
more specifically in software visualization and algorithm animation.
The aim is to support software comprehension by depicting the static
structure and dynamic semantics of programs or algorithms, where the
system representation is generated by the computer starting from the
software system [20]. Different from VPLs, this kind of VLs exploits
visual techniques to display data, algorithms and software without
visual programming [19].

Diagrams represent information indexed by 2D location [21]. A
considerable VL research area consists in formalizing diagrammatic
languages which ease humans during reasoning activities and commu-
nication [22] and in understanding how humans reason with diagrams
[23].

VLs making an extensive use of images and icons are called iconic
languages. An example of iconic language is the Chinese language,
whose characters are not just letters of an alphabet, but often represent
whole words or ideas [24]. The composition rules of iconic languages
follow the idea behind the composition of Chinese characters, pictorial
patterns with finite structures. Complex characters are obtained by
composing other characters, by following well defined composition
rules, which include horizontal, vertical and surrounding compositions.

In the literature several iconic languages have been proposed for
both professional and end-users as iconic programming systems and
interfaces [25,26], because they represent concepts and actions on
these concepts.

The icon theory of S.K. Chang exploits icons for automating
compilers, e.g., for generating VPL compilers. Other theories explicitly
focused on what makes good a visual notation: representing informa-
tion in a graphical form does not guarantee that it will be worth a
thousand of any set of words [4]. One of the most relevant theories on
how to use visual notation for communicating is the Bertin's Semiology
of Graphics [27], which has large application in the modern theory of
visual languages, also in the Software Engineering field (see [28] as an
example).

According to Chang the term icon denotes a graphic symbol that
represents an object (e.g., a document) or an action (e.g., print or
delete) representing a computational process. This concept is at the
basis of the following definition of generalized icon introduced by S.K.
Chang [8]:

An icon X is a pair Xm Xi(,), where Xi is the pictorial part of the icon
(i.e., the image which appears on the screen) and Xm is the
semantic part, i.e., the meaning of that image.

As an example, an icon depicting a stylized man lying on a bed
(pictorial part) represents a Hotel (meaning of this image).

Fig. 1 shows the hierarchical icons classification proposed by S.K.
Chang [29]. In general, a Complex Icon is a spatial disposition of
Elementary Icons, which represent both objects and processes (or
actions). Composite Object Icons are the results of the composition of
Elementary Object Icons, while Visual Sentences are spatial arrange-
ments of Process Icons and object icons. Finally, a structured set of
related icons constitutes an Icon System.

The syntactic structure of an icon language can be specified through

a grammar. Tortora and Leoncini proposed a model for the specifica-
tion of an icon system in terms of Picture Grammars and a general
purpose icon interpreter, based on attribute grammars [30]. Picture
Grammars are exploited to describe the composition rules of a
complex icon. A picture grammar has the following spatial operators
in its terminal alphabet:

• & represents the horizontal concatenation;

• ∧ represents the vertical concatenation;

• + is the overlay operator.

Fig. 2 shows a visual sentence represented by the text string
char char char cross(& &) + , where the term char corresponds to an
elementary icon, i.e., the rectangle, while the cross symbol is a process
icon corresponding to the action delete. The figure means that the three
rectangles have to be deleted. Of course, another interpretation can be:
“you cannot have three rectangles in a row”. This highlights that there
may be an ambiguous interpretation of a visual sentence.

An iconic operator applied to two icons generates a new icon. It acts
on both the logical and physical parts of the icon. It is important to
point out that logical and physical parts of an icon are mutually
dependent. Thus, when the image of an icon changes, the meaning
associated to it has to be accordingly changed, and vice versa [29].

When designing an iconic language, one of the most relevant factors
to consider is the icon purity [31]. A pure icon enables to entirely
recover the logical part from the physical part, and vice versa. In
particular, let MAT(Xm) be the materializator operator, which associ-
ates to the meaning of an icon the images Xi related to it and DMA(Xi)
the dematerializator operator, which associates to an image of an icon
Xi its meaning.

In general, MAT(Xm) may yield a set of icon images. For example,
MAT(“Mona-Lisa”) may be the original drawing of Mona-Lisa, or a
sketch of Mona-Lisa. DMA(Xi) may also yield a set of meanings. An
icon is pure only when MAT(Xm) and DMA(Xi) are both singletons. It
is obvious that impure icons may cause misunderstanding when used
in man–machine interfaces.

IconLisp [32], a sample Visual Programming Language, offered a
visual language and a visual environment for Lisp programming. The
benefits for programmers were in avoiding the use of parentheses and
in the possibility of developing the functionality simply by composing
other existing functionalities.

When several VLs have been proposed with different aims and
domains, one of the issues was how to recognize the visual sentences of
a VL. Thus, other relevant researches focused on the design and
generation of an iconic language compilers [25]. The SIL-Icon compiler

Fig. 1. Icons classification.

Fig. 2. An example of visual sentence.

R. Francese et al. Journal of Visual Languages and Computing 38 (2017) 1–8

2

Download English Version:

https://daneshyari.com/en/article/4968185

Download Persian Version:

https://daneshyari.com/article/4968185

Daneshyari.com

https://daneshyari.com/en/article/4968185
https://daneshyari.com/article/4968185
https://daneshyari.com

