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h i g h l i g h t s

• Comparing the results from heuristic optimization algorithms requires appropriate metrics.
• Rough metrics are used very often in the power and energy area.
• A more significant metric based on first-order stochastic dominance is proposed.
• The effectiveness of this metric is shown for distribution system optimal reconfiguration.
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a b s t r a c t

In the recent research onpower and energy systemoptimization,manydeterministic andheuristic solvers
have been proposed. Each proposal claims that the new solver is better than the previous ones on the
basis of performance indicators, which are often limited to the best solution found or to simple statistics
(mean, median, standard deviation). This paper introduces a new and more significant performance
indicator based on the concept of first-order stochastic dominance. This indicator can generally compare
the solutions of a given optimization problem for which the global optimum is not known. The optimal
discrete distribution network reconfiguration for a real-scale system was taken as an example problem,
to show the characteristics of the proposed indicator. The results obtained show the effectiveness of the
proposed indicator to limit the acceptability of ‘‘better’’ solvers to the ones that actually exhibit enhanced
performance with respect to incrementally improved benchmarks.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many optimization problems for power and energy system
optimization (and to other fields as well), the number of possible
solutions is so high that there is no way to ensure that the
global optimum has been found. For some discrete optimization
problems (e.g., distribution system optimal reconfiguration [1], or
optimal planning [2]) only the number of possible solutions can
be computed; however, not all the solutions can be generated in
practice, as an exhaustive search is computationally intractable.
For these problems, a number of pseudo-optimal solutions
are obtained by running either different algorithms, or the
same algorithm with different parameters. For algorithms whose
outcomes depend on random number extractions, different
solutions can also be found with the same parameters, just by
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changing the seed for the random number extraction at each
execution. Recently, there has been a fast increase in the proposal
of algorithms based on meta-heuristics to solve optimization
problems. In many cases, they adopt rearranged versions of
existing concepts without truly providing significant contributions
or innovative ideas [3] and use simplistic performance indicators
to state the superiority of the proposed algorithm over other
algorithms.

Indeed, a basic question is how to compare the results coming
from different algorithms. Various responses have been given in
the literature. For example, a method can be claimed to be better
than others if the best solution obtained with this method is better
than all the solutions obtained from other methods. However,
this is a rather limitative view. In fact, the global optimum could
be found by chance during the random search. To increase the
knowledge about the quality of the solver, simple statistical results
(such as mean value, median, and standard deviation) have been
adopted. However, these results lack specific information about
the probabilistic distribution of the solutions.

In general, many publications in the power and energy systems
area only provide a rough assessment of the statistical properties
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of the solutions obtained by the optimization algorithms.More sig-
nificant assessments are carried out in the evolutionary compu-
tation domain [4] through non-parametric tests, which calculate
the confidence interval around the mean (or the median) of the
solutions [5]. A comparison of algorithms using Pareto-dominance
analysis was introduced in [6], using two criteria (the number of
function evaluations before stopping, and the objective function
value), and applying an interval comparison scheme asymptoti-
cally corresponding to the first-order stochastic dominance con-
dition.

The literature in the optimization community addresses the
comparison among algorithms by running the algorithms on a
number of selected problems andusing performancemetrics such as:

• The performance profile [7] of a solver, which is constructed as
the Cumulative Distribution Function (CDF) of the performance
ratio (i.e., the ratio between the computation time of the solver
and the lowest computation time of all the solvers), and is then
used to compare different solvers.

• The data profile [8], constructing the CDF of the problems
that can be solved (within a specified target on the objective
function value) with a given number of function evaluations,
characterizes the performance of the solvers in computationally
expensive optimization problems.

For both performance profiles and data profiles, higher values
indicate a better performance. The computation time and the
number of function evaluations are used as quantitative and
interpretable results, expressing how far a solver behaves better
than another. With these approaches, some challenges have to be
overcome, such as the choice of the set of problems to analyse (no
general criteria are defined), the setupof the target value (generally
user-defined), and the handling of executions that fail to find the
target value.

For a given optimization problem solved by using algorithms
based on meta-heuristics, the nature of the solutions produced
could be more significant than the computation time or the
number of function evaluations to assess the performance of the
algorithms, as good solutions could be obtainedwith very different
computation times. In addition, when the relevant outcomes are
the best solutions obtained from the algorithms, focusing the
analysis on the confidence intervals around the mean or median
could be less useful than providing more details on the occurrence
of the best solutions.

On these bases, the contribution presented here aims to com-
pare the performance of different optimization algorithms used to
solve problems when the global optimum is not known a priori
and may not even be found during the optimization process. The
aim is to exploit the concept of stochastic dominance to construct a
new performance indicator by considering the probabilistic distri-
butions of the solutions found with different algorithms. This ap-
proach effectively highlights the relative importance of the best so-
lutions obtained by the algorithms under test.

2. The stochastic dominance framework

Stochastic dominance concepts have been set up on the basis
of the definitions provided by Hadar and Russell [9]. In this
section, these concepts are adapted to the optimization problem
outcomes. In particular, let us consider a problemwith an arbitrary
number of variables included in the vector x, and an arbitrary
number of parameters included in the vector p. Without the loss
of generality, the minimization of the single-objective function
g (x, p) is considered with given sets of equality constraints

r (x, p) = 0 and inequality constraints s (x, p) ≤ 0, as follows:

y = min {g (x, p)} (1)
s.t. r (x, p) = 0

s (x, p) ≤ 0.

The optimization can be solved with different methods. Let us
consider a generic number M of optimization methods applied
to the same variables and parameters. For each method, the
optimization (1) is solved for a given number H of executions,
obtaining H outcomes of the variable y; these outcomes are sorted
in the ascending order to construct the CDF of the solutions
obtained. This CDF, obtained by running H executions of the
methodm, is denoted as FH

m (y).
Stochastic dominance is defined by considering a pair of

optimization methods (e.g., m1 and m2), with H results obtained
from each method, as follows:

1. First-order stochastic dominance (Fig. 1(a)): the method m1
exhibits first-order stochastic dominance over the method m2
if and only if FH

m1
(y) ≥ FH

m2
(y) for any y, with strict inequality

holding at least for one value of y (to avoid the case with
identical CDFs).

2. Second-order stochastic dominance (Fig. 1(c)): the method m1
exhibits second-order stochastic dominance over the method
m2 if and only if the condition (2) holds for any y, with strict
inequality existing at least for one value of y:

AH
m1,m2

(y) =

 y

z=0


FH
m1

(z) − FH
m2

(z)


≥ 0. (2)

The first-order stochastic dominance is a sufficient condition
to guarantee second-order stochastic dominance, but not vice
versa; in fact, the second-order stochastic dominance is based on
an integral (not point-to-point) inequality and may also occur in
some caseswith intersections between the CDFs.With reference to
Fig. 1, the solution from method m2 is second-order stochastically
dominated by both solutions of methodm1 and methodm3 (as the
areas in Fig. 1(c) never become negative); however, themethodm3
does not exhibit first-order stochastic dominance over themethod
m2 (as shown in Fig. 1(b)).

On these bases, the concept of first-order stochastic dominance
is useful to develop a performance indicator that can be used
for appropriately comparing the outcomes of two (or more)
optimization methods. For this purpose, at first it is necessary to
construct a reference CDF such that no other CDF can be found
with one or more values located at the left of it (i.e., with better
cumulative values, in the minimization case), as indicated in the
following section.

3. Construction of the reference CDF

Let us consider a minimization problem solved by using M
methods. Each method is run to obtain K solution points. The best
H points, with H ≤ K , are then ordered in the ascending order
to obtain the corresponding CDF, which is composed of H vertical
steps of width 1c = 1/H each.

Fig. 2(a) shows a qualitative example based on the results of
two methods (denoted as mA and mB), with H = 20, already
represented in CDF form. A temporary vector is constructed
by merging all the solution points obtained from the different
methods and by ordering them in the ascending order (Fig. 2(b)).
The H solutions with the better (lowest, for minimization) values
of the objective function are used to form the reference CDF F (H)

ref .
Thereby, the reference CDF is composed ofH vertical steps ofwidth
1c each (Fig. 2(c)). The other points of the temporary vector are
discarded. The choice of the two values H and K depends on the
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