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a b s t r a c t 

To solve the task of segmenting clusters of nearly identical objects we here present the template ro- 

tation expectation maximization (TREM) approach which is based on a generative model. We explore 

both a general purpose optimization approach for maximizing the log-likelihood and a modification of 

the standard expectation maximization (EM) algorithm. The general purpose approach is strict template 

matching, while TREM allows for a more deformable model. As benchmarking we compare TREM with 

standard EM for a two dimensional Gaussian mixture model (GMM) as well as direct maximization of 

the log-likelihood using general purpose optimization. We find that the EM based algorithms, TREM and 

standard GMM, are faster than the general purpose optimizer algorithms without any loss of segmen- 

tation accuracy. When applying TREM and GMM to a synthetic data set consisting of pairs of almost 

parallel objects we find that the TREM is better at segmenting those than an unconstrained GMM. Finally 

we demonstrate that this advantage for TREM over GMM gives significant improvement in segmentation 

of microscopy images of the motile unicellular alga Seminavis robusta . 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Template matching is a general term for matching an object 

of interest with known features or shapes to a more complicated 

scene where the object may be present. Different variants of tem- 

plate matching are widely used in optical character recognition, 

medical image segmentation, face detection, and action recognition 

( Gupta et al., 2014; Jain et al., 1998 ). For a template to be matched 

in the scene there is normally a large number of possible trans- 

formations to be considered such as object scaling, rotation and 

translations. This means that the computational cost of the match- 

ing normally is high and to match numerous objects in different 

configurations leads to a combinatorial explosion ( Korman et al., 

2013; Ouyang et al., 2012 ). 

This paper will demonstrate the use of the template rotation ex- 

pectation maximization (TREM) approach for segmentation of indi- 

vidual objects in clusters. By assigning the spatial position of sin- 

gle pixels to terms of a two-dimensional Gaussian mixture model 

(GMM), which includes prior information about how the objects 
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look, we will separate clusters of objects with a known shape. 

Compared to traditional unconstrained GMMs trained by expecta- 

tion maximization (EM) ( Bishop, 2007) , which are used to separate 

clusters of polymorphonuclear neutrophils ( Brandes et al., 2015) , 

we will demonstrate the that TREM is better in resolving clusters 

of objects with known shape. When compared with other template 

matching algorithms, which often rely on general purpose optimiz- 

ers ( Bhagya et al., 2014 ; Ouyang et al., 2012) , we will show that 

TREM is considerably faster without any loss of segmentation per- 

formance. 

While TREM is generally applicable to different areas of com- 

puter vision it is of special interest for automated image analy- 

sis of microscopy images, where the occurrence of many identical 

objects that need to be segmented occurs regularly ( Medyukhina 

et al., 2015 ). These objects are not seldom tightly clustered to an 

extent that standard segmentation techniques, such as threshold- 

ing or watershed, becomes extremely challenging. For template 

matching in general, an approximate match often is sufficient ( Jain 

et al., 1998) but is often not useful in microscopy images as we 

require high resolution, especially when tracking the segmented 

object. It is also the case that template matching normally breaks 

down when objects are touching ( Zimmer, 2012 ). For object seg- 

mentation in microscopy images EM has been combined with tem- 

plate matching in semi-automated algorithms to extract features 
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from high-resolution images of zebrafish ( Peravali et al., 2011) and 

for segmentation of cell nuclei using supervised learning ( Chen 

et al., 2013 ). For object clusters that efficiently can be skeletonized 

the combination of EM and template matching the method for un- 

tangling C. elegans clusters by Raviv et al. (2010) represents an 

attractive approach. Unsupervised methods that work directly on 

shapes in binary or grey scale images are constrained to either 

strongly rod-like ( Moss and Hancock, 1997 ; Zhang et al., 2006) or 

almost perfectly circular/spherical cells ( Wörz et al., 2008 ). TREM 

is applicable to both those extremes but also to the whole spec- 

trum of oval and rectangular objects. 

For non-biological systems these shape restrictions might seem 

strongly limiting but in biology there are several bacteria (Enninga 

et al., 2005 ; Wang et al., 2010) , fungal spores ( Munkvold and 

Neely, 1990) and algae ( Chepurnov et al., 2002 ; Saison et al., 2010 ; 

Vanstechelman et al., 2013) that are fulfilling the criteria of shapes 

that can be well described by a non-circular two dimensional 

Gaussian function. Because of its probabilistic formulation TREM 

is robust to small and medium object deformations and moderate 

affine transformations other than translation and rotation. Here we 

evaluate two different approaches in fitting a GMM where a fixed 

template for the shape of the objects is imposed through the defi- 

nition of a fixed covariance matrix, �0 . 

In this paper we consider the case where the number of objects 

in clusters, K , is known or approximated using a different method. 

Naturally, K is known for synthetic data and for microscopy data 

we manually annotate the number of objects in each cluster. While 

this pre-requisite implies that task of object enumeration is al- 

ready solved, TREM attempts to find the most likely configuration 

of objects within a cluster. This is of importance in object tracking, 

where faulty segmentation can give false movement patterns of 

the object ( Chen et al., 2006 ; Yang et al., 2006) , or colocalization of 

objects and functional markers on a sub-cellular level ( Rizk et al., 

2014 ). A specific example of the need to correctly identify the po- 

sition and outline of each object in a cluster is when fluorescence 

in situ hybridization (FISH) techniques are used to identify abnor- 

mal DNA content of cell nuclei ( Kallioniemi et al., 1992; Leversha 

et al., 2009; Pinkel et al., 1988 ). When using FISH the successful 

segmentation of each nucleus is a must and this is normally per- 

formed using watershed segmentation ( Malpica et al., 1997 ). Su- 

pervised template matching has also been suggested as a possi- 

ble approach when resolving clusters of nuclei for subsequent FISH 

analysis ( Chen et al., 2013 ). The organism that fulfils the criteria of 

fixed shape, size, non-rotational symmetric in this study is the al- 

gae species Seminavis robusta . This is a marine diatom ( Chepurnov 

et al., 2002 ; Vanstechelman et al., 2013) that is important in the 

fixing of inorganic carbon ( Granum et al., 2005 ; Vanstechelman 

et al., 2013) and their motility is studied in connection to envi- 

ronmental variables ( Cohn et al., 2003 ; Cohn and McGuire, 20 0 0 ; 

Coquillé et al., 2015) . To study the motility it is necessary to first 

segment the individual alga to then track them and analyse their 

movement pattern as a function of the environment. 

TREM assumes that we already have an appropriate binary rep- 

resentation of the image data. However, no restrictions are placed 

upon the method used to obtain the binary image. In this paper 

we will use both fixed threshold for the synthetic data and the 

more advanced directed acyclic graphical (DAG) continuous max- 

flow segmentation for the microscopy images ( Rajchl et al., 2012; 

Yuan et al., 2010 ). 

We will here demonstrate the usefulness of TREM by comparing 

it with a classical GMM. We also consider the case of pure rotation 

of the template in a hybrid algorithm where classical EM is used 

to determine the location of objects and general purpose optimiza- 

tion for orientation called general purpose rotation and expectation 

maximization translation (GPR-EMT). Finally we compare TREM to 

the direct log-likelihood maximization (DLLM), where all parameters 

of the log-likelihood are estimated using a general purpose opti- 

mizer. The algorithms are applied to two sets of synthetic data and 

one microscopy data set. The first synthetic data set is generated to 

evaluate general performance and runtime of the algorithms. We 

then move on to a special case of almost parallel objects were we 

check if the template approach is giving us the expected advantage 

over traditional GMMs. 

2. Methods 

2.1. Generative model 

In principle, TREM can be applied to higher dimensions than 

two, for the case of image analysis the case of three dimensions is 

of interest, but in this paper we will only consider the case of two 

dimensions for clarity. We assume that the pixels at position x n 
belonging to a foreground object are a realization of the probability 

function p ( x n ). We formulate the log-likelihood as 

L (θ ) = 

N ∑ 

n =1 

log (p(x n | θ )) , (1) 

where N is the total number of foreground pixels in a given cluster. 

As in other maximum likelihood formulations, we seek the param- 

eters, θ , that maximise the log-likelihood given the data ( Bishop, 

2007 ). The generative model of a cluster, where K denotes the to- 

tal number of objects in the cluster, express the probability that a 

pixel at position x n is part of object k . We assume that this proba- 

bility is described by 

p(x n | θ ) = 

K ∑ 

k =1 

p(x n | k, θ ) p(k ) , 

p(x n | k, θ ) = N (x n , μk , �k ) , p(k ) = 1 /K. 

In this model we assume that the prior distribution, p ( k ), is dis- 

cretely uniform based on that we are considering near identical 

objects where the intensities, at least within a cluster, are approx- 

imately uniform. The noise model, p ( x n | k, θ ), is a two dimensional 

Gaussian governed by the mean, μk ∈ R 

2 , and covariance matrix 

�k ∈ R 

2 ×2 . For this generative model we have the set of parame- 

ters θ = { μk , �k } . 

2.2. Unconstrained Gaussian mixture model 

An established approach to determine the position of cells in 

a cluster is to fit an unconstrained two dimensional GMM to the 

cluster ( Brandes et al., 2015) . Just as in our approach this assumes 

that the number of objects in the cluster can be well approximated 

using, for example, the total cluster area. We follow the standard 

steps of EM ( Dempster et al., 1977 ; Neal and Hinton, 1998) by for- 

mulating the variational free energy as 

F (θ, q (k )) = 

N ∑ 

n =1 

[ 

K ∑ 

k =1 

q (k ) [ log (p(x n | k, θ )) + log (p(k )) ] 

] 

+ H(q ) ≤ L (θ ) . (3) 

Here, q ( k ) is an arbitrary probability function and the Shannon en- 

tropy of q ( k ) is defined as H(q (k )) = − ∑ N 
n =1 

∑ K 
k =1 q (k ) log (q (k )) . 

The EM algorithm then alternately increases F (θ, q (k )) by finding 

q while fixing the parameters θ (E-step) and then updating the pa- 

rameters θ while considering q ( k ) to be constant (M-step). In prac- 

tice, given a set of parameters θ ′ we perform the E-step by setting 

q (k | x n , θ ′ ) = p(k | x n , θ ′ ) , which can be calculated by using the pa- 

rameters θ ′ in Eq. (2) and applying Bayes’ theorem. During the M 

step we take the derivative of F (θ, q (k | x n , θ ′ )) with regard to the 
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