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A B S T R A C T

Hypergraph is a powerful representation for several computer vision, machine learning, and pattern recog-
nition problems. In the last decade, many researchers have been keen to develop different hypergraph
models. In contrast, no much attention has been paid to the design of hyperedge weighting schemes. How-
ever, many studies on pairwise graphs showed that the choice of edge weight can significantly influence
the performances of such graph algorithms. We argue that this also applies to hypergraphs. In this paper,
we empirically study the influence of hyperedge weights on hypergraph learning via proposing three novel
hyperedge weighting schemes from the perspectives of geometry, multivariate statistical analysis, and
linear regression. Extensive experiments on ORL, COIL20, JAFFE, Sheffield, Scene15 and Caltech256 datasets
verified our hypothesis for both classification and clustering problems. For each of these classes of prob-
lems, our empirical study concludes with suggesting a suitable hypergraph weighting scheme. Moreover, the
experiments also demonstrate that the combinations of such weighting schemes and conventional hyper-
graph models can achieve competitive classification and clustering performances in comparison with some
recent state-of-the-art algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Hypergraph is a commonly used machine learning technique,
which represents the structure of data via measuring the simi-
larity between groups of points [1–10]. As a generalization of a
graph, the edge of hypergraph (hyperedge) can own any number
of vertices rather than two vertices as a graph (Fig. 1 gives an
example of hypergraph). This property endows hypergraph a strong
descriptive ability of data, particularly, for depicting the complex
high-order data relation, since each edge often represents a data
relation in graph learning. According to this merit, hypergraph is
not only as same as a graph which is a general way to address
the fundamental learning tasks, such as, classification and clus-
tering [6,11-13], but also is a suitable technique to address the
recently hot computer vision and machine learning issues, such
as attribute learning [14], multi-label learning [15–17], multi-view
learning [18,19], matching [20–22] and image annotation [1,23].

Recently, some impressive hypergraph models have been pro-
posed [2,8,11,25-27], and their hypergraph learning approaches
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were successfully applied to tackle extensive tasks [9,10,28-31].
Generally speaking, hypergraph models can be roughly divided
into two categories. The first category uses spectral clustering
techniques to partition the vertices via constructing a simple pair-
wise graph from the original hypergraph. Representative methods
include clique expansion [25], star expansion [25] and clique averag-
ing [26], etc. Approaches in the second category define a hypergraph
Laplacian using analogies from the simple pairwise graph Laplacian.
Representative methods in this category include Zhou’s normalized
Laplacian [11], Bolla’s Laplacian [27], etc. However, interestingly, as
was shown in Ref. [32], all of the previous algorithms, despite their
very different formulations, can be reduced to two graph construc-
tions, the star expansion and the clique expansion, and they are
equivalent to each other under specific conditions.

Besides hypergraph models which mainly focus on hypergraph
partition, the quality of hypergraph is also an important factor that
affects the performance of hypergraph learning in different appli-
cations. A good hypergraph should well reflect the real relations of
data. So, in the last decade, there also exist several studies about
hypergraph construction, e.g. Refs. [11,25-27,33-35]. But, to the best
of our knowledge, there are no prior research that formally discusses
the effect of the strategy used for assigning hyperedge weights in
hypergraph learning, which we call “weighting scheme”. In this
paper, we aim at addressing this gap. In graph learning, which is the
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Fig. 1. (a) An example of hypergraph which has 18 hyperedges (15 pairwise edges + 3 three-order hyperedges), and (b) its corresponding vertex–edge incident matrix which is
a common tool to depict a hypergraph. (This figure is referenced from our earlier work [24].)

pairwise case of hypergraph, extensive studies have already shown
that the choice of edge weight can significantly affect the results
of the graph-based algorithms. The Heat-Kernel and Dot-Product
weighting schemes are considered as the two most representative
weighting schemes of edges [36–39]. Therefore, we hypothesize
that the choice of hyperedge weights also plays a crucial role in
hypergraph learning. This motivated us to investigate if there exists
a preferable hyperedge weighting scheme in hypergraph learning.
Moreover, we believe that different choices of hyperedge weights
provide alternative ways to explain the hypergraph from different
perspectives. In this paper, we empirically discuss the influence of
the choice of hyperedge weight to hypergraph learning via present-
ing and evaluating three novel hyperedge weighting schemes.

As several hypergraph algorithms have been proposed, a
few hyperedge weighting schemes have been heuristically and
marginally mentioned in such papers. For example, Huang et al. [3]
proposed a probabilistic hypergraph-based image retrieval system.
In this system, the hyperedge is generated by k-nearest neighbor
searching, and its weight is the sum of the pairwise edge weights
between the centroid (seed point) of hyperedge and its neighbors.
Zhang et al. [7] presented an unsupervised hypergraph-based fea-
ture selection method, which measures the high-order similarity
of the vertices in a hyperedge using multidimensional interaction
information (MII). For addressing 3-D object retrieval, Gao et al. [2]
calculated the hyperedge weight via directly summing the weights
of all pairwise edges whose end points are all in the same hyper-
edge. Clearly, the computation of such hyperedge weight is actually
the inverse process of the clique expansion. So, if we use the mean
operation to replace the sum operation, such way will be the inverse
process of the clique averaging. In contrast to the previous three
methods, Yu et al. [6] defined the hyperedge weight as a parameter
of the hypergraph learning model via imposing a sparsity constraint.
Thus, the hyperedge weights can be adaptively learned as the graph
model optimized. The initial hyperedge weights of this method are
constructed by following Huang’s way [3], and the global optimal

weights still cannot be guaranteed. Certainly, there are other hyper-
edge weighting schemes [4,5], but most of them are associated with
very specific tasks.

Complementary to the previously proposed hyperedge weights,
we carefully design three novel hyperedge weights from the per-
spectives of geometry, multivariate statistical analysis and linear
regression [40,41] (see Fig. 2). First, from the perspective of geome-
try, a hyperedge can be regarded as a high-order simplex [32]. Thus,
the volume of simplex is an intuitive hyperedge weight, which pro-
vides a reasonable dissimilarity measure for a point set. Motivated by
some studies from geometry [42], we present three ways to compute
the volume of the simplex for different situations. It is worthwhile to
note that these three ways actually define the mathematical relation-
ships between hyperedges and vertices, a hyperedge and its pairwise
edges, and a hyperedge and its sub-hyperedges, respectively. Second,
from the perspective of data mining and multivariate statistical
analysis, a hyperedge can be naturally regarded as a cluster in the
sample space, thus the trace of the scatter matrix of the samples
in the same hyperedge should be a good hyperedge weight. Finally,
from the perspective of linear regression [40,41], the linear recon-
struction error of homogenous samples should be smaller than that
of inhomogeneous samples. So, we consider a hyperedge as a small
subset of samples, and use the local linear reconstruction error of
each point in the hyperedge to measure the similarity of the point
set.

In order to verify the importance of hyperedge weighting scheme
in hypergraph learning, three state-of-the-art hypergraph models
including Zhou’s normalized Laplacian [11], clique expansion and
star expansion [25], are adopted to evaluate the different hyper-
edge weight selection strategies for two learning problems, namely
clustering and classification. Representative hyperedge weighting
schemes for classification and clustering are concluded from our
experimental results on ORL, COIL20, Sheffield and JAFFE databases.
The experimental results also demonstrate that a carefully cho-
sen hyperedge weight can significantly improve the performance

Fig. 2. Three explanations of the hyperedge e2, (a) a 4-simplex, (b) a cluster and (c) a linear combination of homogenous vertices.
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