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ARTICLE INFO ABSTRACT

In this paper, we address the problem of image set classification, where each set contains a different num-
ber of images acquired from the same subject. In most of the existing literature, each image set is modeled
using all its available samples. As a result, the corresponding time and storage costs are high. To address
this problem, we propose a joint prototype and metric learning approach. The prototypes are learned to
represent each gallery image set using fewer samples without affecting the recognition performance. A
Mahalanobis metric is learned simultaneously to measure the similarity between sets more accurately. In
particular, each gallery set is represented as a regularized affine hull spanned by the learned prototypes. The
set-to-set distance is optimized via updating the prototypes and the Mahalanobis metric in an alternating
manner. To highlight the importance of representing image sets using fewer samples, we analyzed the cor-
responding test time complexity with respect to the number of images used per set. Experimental results
using YouTube Celebrity, YouTube Faces, and ETH-80 datasets illustrate the efficiency on the task of video
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1. Introduction

Image set classification has been an active research field for more
than twenty years [1-9]. The task is to assign each probe image set to
its corresponding gallery subject. Templates stored in the gallery are
also sets of images. Both gallery and probe sets contain various num-
bers of images, describing the same subject. In the field of biometrics,
many applications can be formulated as an image set classification
problem, such as video-based face recognition [1], gesture recogni-
tion [10], and person re-identification across camera networks [2].
Compared with traditional single image classification, the set-based
approach provides richer information with multiple samples. Hence,
more reliable results are expected. However, it also introduces sev-
eral new challenges: First, not all the information provided is useful
for the task at hand. There is information redundancy or even noise,
especially for large scale image sets. Second the within-set variations
are large (e.g., different views, illumination conditions, sensors). As
a result, building a proper model is crucial. Third, the computational
and storage cost are increased significantly with the rapid growth
of data to be processed. For example, some videos could be thou-
sands of frames long. To solve the image set classification problem,
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a straightforward approach is to model the set-to-set distance. The
smaller the distance is, the more similar two image sets will be.
According to how this distance is modeled, existing literature can
be grouped into three categories: (i) subspace model, (ii) statistical
model, and (iii) affine hull model.

1.1. Subspace model

Methods in this category can be further grouped into two sub-
categories: single subspace model and multi-subspace model. In the
single subspace model, each image set is modeled as a single lin-
ear subspace [3, 4, 5, 11, 12] and can be treated as a point on
a Grassmann manifold [3, 4]. Different mutual subspace distances
were defined based on the principal angles between subspaces. Lin-
ear discriminative analysis [11], non-linear manifold kernels [3, 4],
sparse dictionary learning [12], and direct manifold-to-manifold
mappings [5] are employed to optimize the distances. However,
the single subspace model cannot reflect the importance of differ-
ent local variations under different scenarios. In the multi-subspace
model, each image set is modeled as a mixture of several subspaces
[6, 7, 8, 13]. These subspaces can be constructed using clustering
algorithms (e.g., k-means clustering [6], hierarchical agglomerative
clustering [7], and Maximum Linear Patches [8, 13]). The set-to-set
distance is defined as the distance between the closest pair of local
subspaces. It can represent the complex local variations in a better
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way. However, computing a multi-subspace model is very expensive
and a large amount of data is needed.

1.2. Statistical model

Statistical characteristics are used to model the image sets. It
can be further divided into two sub-categories: parametric and
non-parametric. In the parametric statistical model, an image set
is either modeled as a single Gaussian distribution [9] or a mix-
ture of Gaussian [14]. The Kullback-Leibler divergence [9] or kernel
based distance [14] is used to measure the distance between two
sets. Methods in this category make strong assumptions concerning
the distribution of the data which may not always be true. In non-
parametric statistical model, each image set is described using its
statistical properties: mean [15, 16], covariance matrix [16, 17], and
other higher order statistics [15]. The distance is measured either
in a Euclidean space [15, 16] or on a Riemannian manifold [16, 17].
The manifold-to-manifold dimensionality reduction [18] was devel-
oped to reduce the cost of computing a high dimensional Riemannian
manifold. Multi-metric learning [15, 16] was employed to combine
different properties together. The non-parametric statistic model
relies only on a few statistical properties. As a result, it is robust, but
may ignore significant local variation in the data.

1.3. Affine hull model

Each image set is modeled as an affine hull [19] or different kinds
of reduced affine hull [19-21]. The geodesic distance between two
hulls is then employed to measure the dissimilarity between sets.
Mahalanobis metric is employed [22] for a more accurate dissimilar-
ity measurement. More recently, the correlations between different
gallery sets were taken into consideration [2, 23]. Although the hull-
based approaches have a better tolerance on intra-class variation,
the global data structure is weakly characterized. In addition, it is
computationally expensive, especially when there is a large number
of images in each set. In summary, even though there is a plethora
of algorithms developed to address the image set classification
problem, most of them only focus on exploring more discriminative
similarity measurements. Very few efforts were focused on reduc-
ing high time/storage cost and information redundancy introduced
by large scale image sets.

To address this gap, we extend the method of Kostinger et al. [24]
to set-to-set matching and propose the Set-based Prototype and Met-
ric Learning framework (SPML). Groups of discriminative prototypes
and a Mahalanobis metric are jointly learned for image set classifica-
tion. The prototype learning seeks to represent the gallery image sets
with fewer templates, while maintaining or improving the recogni-
tion performance. The metric learning seeks to tailor a more accurate
set-to-set similarity measurement based on the learned prototypes.
We formulate the learning problem in a single loss function, and
optimize the prototypes and Mahalanobis metric simultaneously.
After processing by our SPML, a probe image set lies closer to those
gallery prototype sets from the same subject, and further from those
gallery prototype sets from different subjects, as illustrated in Fig. 1.

Parts of this work have appeared in our conference version [25].
In this paper, we offer three major extensions: (i) we present a time
complexity analysis on existing distance models to highlight our
motivation; (ii) we provide more detailed discussions and compar-
isons with methods from different categories; (iii) we include addi-
tional sensitivity analyses carried out to explore different aspects of
the proposed algorithm.

The rest of the paper is organized as follows: In Section 2, we
discuss related works. In Section 3 we introduce the mathemati-
cal model of the proposed framework. In Section 4 we discuss the
implementation of our framework and the testing time complexity.
In Section 5 we present the experimental settings and results; in

Section 6 we summarize the limitations of our proposed framework;
Section 7 concludes the paper.

2. Related work

In this section, we offer a brief introduction on algorithms that are
closely related to our work. In particular, our work is built on the reg-
ularized nearest points (RNP) method [21], set-to-set distance metric
learning (SSDML) [22], and the prototype learning for large margin
nearest neighbor classifiers [24]. For the convenience of discussion,
an overview of the notations used in this paper is summarized in
Table 1.

In RNP, Yang et al. [21] proposed to model an image set X; as a
regularized affine hull (RAH), spanned by all its samples:
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where u = [0; 1;1], X; = [X;; 17;07], X; = [—X;; 07; 1], and the col-
umn vectors 0 and 1 have the appropriate sizes associated with their
corresponding context. Although the regularization can effectively
restrict the expansion of the hull area, the natural geodesic distance
might not reflect the dissimilarity for the task at hand properly. To
tailor a more accurate set-to-set distance, Zhu et al. [22] extended the
Mahalanobis distance metric learning [26] to the geodesic distance
between hulls:
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where M is a positive semi-definite matrix to be learned. It can be
learned using any distance metric learning model. In both RNP and
SSDML, the restricted affine hull is spanned by all the samples in
the image set. This is not only computationally expensive, but also
sensitive to outliers. In single-shot image classification, Kostinger
et al. [24] proposed to reduce and optimize the templates used for
each subject, and a distance metric is learned jointly. In this paper,
we extend this idea to set-to-set matching. In particular, we build a
framework, which can jointly learn a prototype representation and
a Mahalanobis distance metric for the geodesic distance between
hulls.
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