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a b s t r a c t 

Canonical correlation analysis (CCA) is a main technique of linear subspace approach for two-view di- 

mension reduction by finding basis vectors with maximum correlation between the pair of variables. The 

shortcoming of the traditional CCA lies that it only handles data represented by two-view features and 

cannot reveal the nonlinear correlation relationship. In recent years, many variant algorithms have been 

developed to extend the capability of CCA such as discriminative CCA, sparse CCA, kernel CCA, locality 

preserving CCA and multiset canonical correlation analysis (MCCA). One representative work is Laplacian 

multiset canonical correlations (LapMCC) that employs graph Laplacian to exploit the nonlinear correla- 

tion information for multiview high-dimensional data. However, it possibly leads to poor extrapolating 

power because Laplacian regularization biases the solution towards a constant function. In this paper, we 

present Hessian multiset canonical correlations (HesMCC) for multiview dimension reduction. Hessian 

can properly exploit the intrinsic local geometry of the data manifold in contrast to Laplacian. HesMCC 

takes the advantage of Hessian and provides superior extrapolating capability and finally leverage the 

performance. Extensive experiments on several popular datasets for handwritten digits classification, face 

classification and object classification validate the effectiveness of the proposed HesMCC algorithm by 

comparing it with baseline algorithms including TCCA , KMUDA , MCCA and LapMCC. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Many computer vision tasks employ multiple information 

rather than a single representation to achieve more robust per- 

formance. For example, an image can be described with color, 

shape, and texture features [1–3] . The extracted visual features 

usually have high dimensions of up to hundreds or thousands, 

which often causes the problem called the curse-of-dimensionality 

[4,5] . Hence multiview dimension reduction algorithms [6,7] have 

been subsequently proposed with the purpose of finding an ap- 

propriate low-dimensional feature subspace from multiview high- 

dimensional features. Canonical correlation analysis (CCA) [8] is 

one of the most representative techniques and has been widely 

applied to many multiview learning applications including classi- 

fication, retrieval, regression and clustering. 
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Canonical correlation analysis (CCA) proposed by Hotelling 

[8] seeks a pair of linear transformation for two view high- 

dimensional features such that the corresponding low-dimensional 

projections are maximally correlated. In recent years, dozens of 

CCA extensions have been developed and these algorithms can be 

roughly categorised into the following four groups namely discrim- 

inative CCA, sparse CCA, kernel CCA and locality preserving CCA. 

Discriminative CCA [9–11] considers the combination of within- 

class/between-class information and correlated information of 

training samples to improve the discrimination of the low- 

dimensional subspace. For example, Kim et al. [9] developed a lin- 

ear discriminant function of CCA similarly to linear discriminant 

analysis (LDA) by maximizing the canonical correlations of within- 

class sets and minimizing the canonical correlations of between- 

class sets. Wang et al. [10] proposed an unsupervised discriminant 

CCA based on spectral clustering by utilizing the correlation infor- 

mation between the samples in the same class including the cor- 

relation between paired data, the correlation across views, and the 

correlation within views. Sun et al. [11] added the uncorrelation 
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constraint into multiview linear discriminant analysis (MLDA) and 

proposed the multiview ULDA (MULDA) to seek the project direc- 

tions with minimum redundancy. Besides, they also extended the 

MULDA to its kernel version, i.e., kernel multiview uncorrelated 

discriminant analysis (KMUDA), to tackle the nonlinear case. 

Sparse CCA [12–14] seeks two sparse canonical vectors to max- 

imize the correlation between the two views. Hardoon and Shawe- 

Taylor [12] proposed a sparse CCA by minimizing the number 

of features while maximizing the correlation between the primal 

view and the dual view. Witten et al. [13] employed penalized 

matrix decomposition to optimize l 1 -regularized sparse CCA. And 

Chen et al. [14] developed a structured sparse CCA by incorporating 

the structured-sparsity-inducing penalty to exploit both pre-given 

group structure and unknown group structure. 

Kernel CCA [15–18] finds maximally nonlinear correlations via 

an implicit nonlinear mapping to increase the flexibility of the fea- 

ture selection. Lai and Fyfe [15] used a kernel trick to map the data 

to a high-dimensional feature space and then performed the tradi- 

tional CCA on the feature space. Akaho [17] developed regularized 

kernel CCA to avoid the overfitting by incorporating regularization 

technique into kernel CCA. Zhu et al. [18] utilized a mixture of ker- 

nels rather than a single kernel as the nonlinear mapping and im- 

proved both interpolation ability and extrapolation ability of kernel 

CCA. 

Locality preserving CCA incorporates locality information into 

CCA and then preserves the local manifold structure [19] while ob- 

taining the canonical correlation [20] . Sun and Chen [21] decom- 

posed the global nonlinear structure into many locally linear ones, 

then conducted linear CCA on each small neighborhood and finally 

integrated the local sub-problems to obtain the canonical correla- 

tion. 

Although CCA and its variants have achieved practical success, 

they are in nature a two-view dimension reduction techniques and 

cannot handle the problem of multiview dimension reduction that 

often exists in many real-world applications. Multiset canonical 

correlation analysis (MCCA) [22] then has been developed to tackle 

the correlation analysis of multiple variables. Luo et al. [23] pro- 

posed tensor CCA to maximize the correlation between the mul- 

tiple canonical variables by finding the best rank-1 approxima- 

tion of the high-order covariance tensor. And recently, Yuan et al. 

[24] proposed Laplacian multiset canonical correlations (LapMCC) 

to discover the nonlinear correlations among multiview features 

by combining many locally within-view and between-view corre- 

lations together. 

In spite of LapMCC has achieved promising performance com- 

pared with the traditional MCCA algorithms, it has been identified 

that Laplacian will bias the solution towards a constant function 

and then lead to poor extrapolating power [25] . On the other hand, 

Hessian predicts a high order derivatives and has a richer null 

space, which makes it can steer the prediction varying smoothly 

along the underlying manifold. In this paper, we integrate Hes- 

sian into the multiset canonical correlations and derive Hessian 

multiset canonical correlations (HesMCC). HesMCC takes the ad- 

vantage of Hessian and provides superior extrapolating capabil- 

ity. Therefore, HesMCC can significantly leverage the performance. 

Fig. 1 graphically demonstrates the whole procedure of the pro- 

posed HesMCC. Briefly speaking, the contribution of this paper in- 

cludes the following three folds: (1) we derive the locality pre- 

serving canonical correlation by using Hessian; (2) we further for- 

mulate HesMCC to analyze multiset canonical correlation; (3) we 

present the algorithm of HesMCC and conduct extensive experi- 

ments to verify the proposed HesMCC. 

Finally, we carefully implement HesMCC for multiview di- 

mension reduction and conduct extensive experiments on USPS 

database for handwritten digits classification, Yale-B database and 

ChokePoint database for face recognition and ETH-80 database for 

object classification respectively. We also compare HesMCC with 

TCCA , KMUDA , MCCA and LapMCC algorithms to evaluate the per- 

formance of HesMCC. The experimental results verify the effective- 

ness of HesMCC by comparison with the baseline algorithms. 

The rest of this paper is organized as follows. We firstly re- 

view some related works in Section 2 . Then we derive the pro- 

posed HesMCC algorithm in Section 3 . Section 4 details the imple- 

mentation of HesMCC. And experimental results are discussed in 

Section 5 , followed by the conclusion in Section 6 . 

2. Related work 

In this section, we first briefly summarize the related work 

for the multiview canonical correlation analysis including multiset 

canonical correlation analysis (MCCA), multiset integrated canoni- 

cal correlation analysis (MICCA), tensor canonical correlation anal- 

ysis (TCCA), and Laplacian multiset canonical correlation (LapMCC). 

And then, we give a brief null space description of Laplacian and 

Hessian. 

2.1. Traditional multiview CCA related works 

Suppose we are given a dataset of n examples with m view rep- 

resentations i.e. S = { x (1) 
k 

, x (2) 
k 

, · · · , x (m ) 
k 

} n 
k =1 

, where x (i ) 
k 

∈ R d i is the 

i th view representation of the k th example, d i is the dimension of 

the i th view feature as mentioned above. 

MCCA [22] seeks a set of linear projection directions 

{ αi ∈ R d i } m 

i =1 
such that the sum of pairwise correlations { αT 

i 
x i } m 

i =1 
is largest, which is formulated as 

max ρ( ̃  α) = 

m ∑ 

i =1 

m ∑ 

j=1 

αT 
i S i j α j 

s . t . αT 
i S ii αi = 1 , i = 1 , 2 , · · · , m. 

where S i j = x i x 
T 
j 
. 

MICCA [26] maximizes the generalized relation coefficient be- 

tween the multiset example by defining a generalized uncorrela- 

tion coefficient � ( · ) 

max ρ( ̃  α) = 

√ 

1 − � 

2 
(
αT 

1 
X 

( 1 ) , αT 
2 

X 

( 2 ) , · · · , αT 
m 

X 

( m ) 
)

where � (x 1 , x 2 , · · · , x p ) = 

√ 

det (G (x 1 ,x 2 , ··· ,x p )) 
‖ x 1 ‖·‖ x 2 ‖ ···‖ x p ‖ and G ( · ) denotes a 

Gram matrix. 

TCCA [23] directly maximizes the canonical correlation of mul- 

tiviews by straightforwardly analyzing the covariance tensor of the 

different views 

max ρ( h p ) = C 12 ···m ̄

× 1 h 

T 
1 ×̄ 2 h 

T 
2 · · · ×̄m 

h 

T 
m 

s . t . h 

T 
p C pp h p = 1 , p = 1 , 2 , · · · , m. 

where C 12 ���m 

is the covariance tensor among all views and h p is 

the canonical vector. 

LapMCC [24] considers local within-view and local between- 

view correlations by using nearest neighbor graphs 

max ρ( ̃  α) = 

m ∑ 

i =1 

m ∑ 

j=1 

αT 
i S 

L 
i j α j 

s . t . αT 
i S 

L 
ii αi = 1 , i = 1 , 2 , · · · , m. 

here S L 
i j 

= 

1 
n 2 

X (i ) L ( i j ) X ( j) T is the within-view ( i = j ) or between- 

view ( i � = j ) covariance matrix, and L ( ij ) is the graph Laplacian to 

characterise the local geometry of example distribution. 
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