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a b s t r a c t 

In asynchronous multi-sensor fusion, it is hard to guarantee that all sensors work at the single sam- 

pling rate, especially in the distributive and heterogeneous case. Meanwhile, the time-varying sensor bias 

driven by unknown inputs (UIs) are likely to occur in complex environments when conducting the sensor 

registration. In this paper, a two-stage fusion scheme is proposed to estimate the state, the UI and the 

UI-driven bias for asynchronous multi-sensor fusion. By establishing the dynamic system model at each 

scale and deriving its corresponding equivalent UI-decoupled bias dynamic model, the proposed scheme 

is implemented in two stages. At the first stage, each sensor collects its own measurements and gen- 

erates the local optimal estimates of the state and the bias which are later used to compute the local 

estimate of the UI via the least squares method. At the second stage, local estimates of the state and the 

UI are distributively fused via network consensus to obtain the consensus state and UI estimates which 

are fed back to refine the local bias estimate. Local estimators are designed via the orthogonal projection 

principle and the least squares method, and the fusion estimators are designed via the average consen- 

sus fusion rule weighted by matrices. Simulation experiments are given to show the effectiveness of the 

developed method. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Multi-sensor data fusion refers to the process of effectively 

combining data from multiple homogeneous or heterogeneous 

sensors. Up to now, the multi-sensor data fusion technique has 

been applied in a variety of fields such as target tracking, traffic 

control, health monitoring and body sensor/area networks. Among 

them, the data fusion in body sensor/area networks appears to 

be quite interesting and promising due to the rapid develop- 

ment of low-cost micro-sensor devices and the necessity for the 

real-time monitoring of the patients’ physical conditions, see 

e.g. [1,2] and the references therein. An important and practical 

problem for multi-sensor data fusion systems is to find an optimal 

state estimate based on the given measurements. Meanwhile, in 

multi-sensor systems, it is often unrealistic to guarantee that all 

sensors operate at one common rate. For example, for signals with 

different bandwidths, better trade-offs between performance and 
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implementation cost can be obtained using A/D and D/A convert- 

ers at different rates. On the other hand, for processed/estimated 

quantities, sometimes users may specify rates which are different 

from the sampling rates of sensors. Therefore, a great deal of 

attention has been paid to the issue on multi-rate multi-sensor 

data fusion arises in the past decades [3] . 

State estimation with multi-rate sensors was first proposed by 

Andiusani and Gau [4] . In their strategy the dynamic system was 

decomposed into dual subsystems corresponding to the dual-rate 

sensors and the filtering residual of one Kalman filter for the fast- 

rate subsystem was fused with the estimate of the other Kalman 

filter for the slow-rate subsystem. By adopting the Haar wavelet 

[5] or the compactly supported wavelet [6] as a linear projection 

operator, the multi-resolution multi-rate (MRMR) estimation can 

be transformed into a single-rate Kalman estimation with a spe- 

cial structure, and its projection operator was estimated adaptively 

from measurements by using a recursive least squares estima- 

tion algorithm [7] . State estimation with multi-rate measurements 

was solved by the use of a variable structure of moving hori- 

zon estimator, which provides a framework for constrained estima- 

tion that systematically handles constraints caused by a batch of 
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multi-rate measurements [8] . Since different dynamic models al- 

ways have different frequency properties in multiple model sys- 

tems, the fast-rate sensor measurement was thus compressed 

to a slow-rate one with little or no accuracy degradation in 

low-frequency models, resulting in multi-rate interacting multi- 

ple model estimators [9] and applications in target-tracking with 

out-of-sequence GMTI data [10,11] . In the case that the updating 

rate of the state estimate is different from the measurement sam- 

pling rate, the wavelet-transformation-based [12] and the optimal 

H 2 / H ∞ 

-based [13] estimation schemes were proposed. For systems 

having measurement missing or packet losses, the multi-rate H ∞ 

filter [14] , the optimal linear minimum variance estimators [15] , 

and the multi-rate distributed estimation fusion algorithm were 

proposed [16] , respectively. When faults and external disturbances 

occur in systems, the fault detection problem for multi-sensor fu- 

sion under multiple uncertainties were also investigated [17,18] . 

One common precondition for applying the above multi-sensor 

data fusion methods is that sensors should have been registered 

properly [19] . For example, in target tracking, multi-sensor mea- 

surements should be transformed into a common spatial reference 

frame before data fusion. However, the registration error caused 

by the range offset bias and the positioning bias of moving sen- 

sor platforms often exists [20] . The presence of the registration 

error caused by the bias deteriorates the fusion performance se- 

riously, and even leads to ghost tracks. To remove the registration 

error and improve the fusion accuracy, bias estimation is exceed- 

ingly vital. To date, a vast research related to bias estimation has 

been done which can be divided into four categories. 

In the case that the bias is zero-mean and white with unknown 

covariances, the minimum upper bound estimators in pursuit of 

the best upper bounds of estimation error covariances for time- 

varying systems [21] , jump Markov stochastic systems [22] with 

generalized UIs were proposed. In the case that the bias is con- 

stant but unknown, the least squares method was utilized to es- 

timate the bias which was piecewise-constant [23] or a sum of 

basis functions with piecewise-constant weights [24] . The gener- 

alized least squares method was adopted to map the sensor mea- 

surements to the Earth-centered Earth-fixed coordinates and then 

estimate the bias from the discrepancy reported by each sensor 

based on the moving-window hypothesis testing approach [25] . 

For sensor alignment in radar networks, the exact maximum like- 

lihood (ML) method was presented for online estimation of mea- 

surement errors [26] . In the case that the bias evolves according to 

a dynamic model, a two-stage Kalman estimation scheme was pro- 

posed, where the joint estimation of the state and the bias was de- 

coupled and implemented in two parallel reduced-order filters, re- 

spectively [27] . Through transforming the multi-sensor multi-frame 

measurements into the state-free bias pseudo-measurements via 

the exact method, the Kalman filter was utilized to estimate the 

sensor bias [28] . In the case that the bias is absolutely unknown, 

the ML method was given for the spatial alignment of multiple 

dissimilar sensors [29] and the joint estimation of bias and target 

state in the Bayesian framework [30] . The unscented Kalman filter 

(UKF) was proposed to fuse and register sensors with both spa- 

tial and temporal biases [31] . The expectation-maximization (EM) 

and the interacting multiple models (IMMs) were integrated to es- 

timate the bias in a unified framework to solve the simultaneous 

registration and fusion of the electronic support measure sensors 

[32] . Later, the EM optimization was further used for joint data as- 

sociation, registration and fusion, where the data association and 

bias estimation were obtained in the M-step and the state estima- 

tion and track fusion were updated in the E-step [33] . To reduce 

the high computation cost of [31–33] , the fast maximum a poste- 

riori (FMAP) algorithm for joint registration and tracking was de- 

rived [34] . In general, most of the above work has been done in the 

case of synchronous sensors, whereas sensors may have different 

sampling rates, different initial sampling instants, or even differ- 

ent communication delays to the fusion center. For instance, in the 

infrared and laser detection systems, the azimuth angle and the 

elevation angle of the target are acquired from the infrared detec- 

tion system with a higher sampling rate at the finest scale, while 

the range of the target is acquired from the laser detection system 

with a lower sampling rate at the coarsest scale. In addition, the 

sampling of the infrared detection system and the laser detection 

system are usually initialized at different time instants. This gives 

rise to the asynchronous sensor fusion. 

Regarding asynchronous multi-rate multi-sensor fusion, the 

multiscale system theory [35–39] the bach process method 

[40–42] , and the multi-rate filter banks approach [43] were pre- 

sented. In the multiscale system theory, state estimation with 

complete measurements [35,36] and incomplete measurements 

[37] were developed and extended to remove delay effect by al- 

lowing delays to occur between two consecutive sampling time 

and assuming that the measurement loss detection is done via 

data validity checking mechanism [38] . For target detection and 

tracking using infrared/laser systems, a novel state estimation al- 

gorithm is devised by combining the multiscale system theory and 

the converted measurement Kalman filter [39] . In the batch pro- 

cess method, the general sensor-to-sensor-track fusion for asyn- 

chronous sensor systems [40] , the centralized/distributed fusion 

algorithms for asynchronous sensors with arbitrary communica- 

tion [41] , and the IMM fusion estimation algorithm for stochas- 

tic multi-model systems were presented [42] , respectively. In the 

multi-rate filter banks approach, a bank of multirate filters were 

designed and fused to achieve the global optimal estimates for 

asynchronous sensor fusion [43] . With respect to asynchronous 

multi-rate bias estimation, algorithms for two asynchronous sen- 

sors were provided for constant [44] and time-varying [45] bi- 

ases within a proper time slot. By decoupling the bias estimation 

from the target estimation, the bias estimation algorithm for mul- 

tiple asynchronous sensors was presented [46] and extended to a 

more general case by allowing the number of sensors to be arbi- 

trary, removing the constraint on the arriving sequence of the sen- 

sor measurements, and considering the correlations between vari- 

ous kinds of noises [47] . However, the UI-driven bias, for example, 

the homologous sensor bias corrupted by countermeasure param- 

eter uncertainties in target tracking systems and the sensor bias 

contaminated by unexpected drift increments, is not considered 

in the above asynchronous sensor fusion algorithms. Nevertheless, 

this appears to be a non-trivial question for the following two rea- 

sons: (1) it is unclear how to establish a system model to incorpo- 

rate the UI-driven bias and the asynchronous sampling in; (2) it is 

pretty hard to find a decoupling condition that simultaneously de- 

couple the state and the UI from the pseudo-measurement model. 

This motivates us to conduct the present research. 

In this paper, we investigate the problem of the joint estimation 

of the state, the UI and the sensor bias for asynchronous multi-rate 

sensor fusion driven by UIs. The state space model is first mod- 

eled at the highest sampling rate (also the finest scale). Then, by 

applying the lifting technique, the asynchronous multi-rate esti- 

mation problem is transformed into a single-rate one where the 

state space models are established at each scale for each sensor. 

Based on the obtained system models, the joint estimation of the 

state and the bias is carried out in two stages. At the first stage, 

every sensor in the system collects its own measurements asyn- 

chronously to obtain the local estimates of the state, the bias and 

the UI. At the second stage, the local estimates from neighboring 

sensors are collected and fused to obtain the consensus estimates 

via the network consensus. The main contributions are as follows. 

(i) To the best of the authors’ knowledge, this is the first attempt at 

the bias estimation for asynchronous multi-rate multi-sensor fusion 

with UIs. The system model is quite comprehensive that caters for 
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