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a b s t r a c t

Without knowing the sparsity basis, Blind Compressive Sensing (BCS) can achieve similar results with
those Compressive Sensing (CS) methods which rely on prior knowledge of the sparsity basis.
However, BCS still suffers from two problems. First, compared with block-based sparsity, the global
image sparsity ignores the local image features and BCS approaches based on it cannot obtain the com-
petitive results. Second, since BCS only exploits the weaker sparsity prior than CS, the sampling rate
required by BCS is still very high in practice. In this paper, we firstly propose a novel blind compressive
sensing method based on block sparsity and nonlocal low-rank priors (BCS-BSNLR) to further reduce the
sampling rate. In addition, we take alternating direction method of multipliers to solve the resulting opti-
mization problem. Experimental results have demonstrated that the proposed algorithm can significantly
reduce the sampling rate without sacrificing the quality of the reconstructed image.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The theory of Compressive Sensing (CS) [1–3] has drawn quite
an amount of attention in digital signal processing. Different from
the traditional methodology of sampling followed by compression,
CS conducts sampling and compression at the same time. From
much fewer measurements than suggested by the Nyquist sam-
pling theory, CS also states that an image can be recovered from
under-sampled measurements when it is sparse in some domain.

The goal of CS is to reconstruct a signal x 2 Rm from measure-
ments b ¼ Ax, where A 2 Rn�m is the sensing matrix and n� m.
This problem is ill-posed in general and therefore has infinitely
many possible solutions. In CS we seek the sparest vector s that sat-
isfies x ¼ Ps:

s ¼ argmin ksk0 s:t: b ¼ APs ð1Þ

where k � k is the l0 norm which counts the number of nonzero ele-
ments of the vector and P is the sparsity basis.

The principle of CS relies on the fact that the signal has a sparse
representation in a given sparsity basis P [4–6] that is universal for
the considered signal class of interest. However, such universal
sparsity basis does not necessarily result in sparsest representa-

tion, which is crucial for the successful recovery. Moreover, we
cannot know the sparsity basis of the unknown signal. Due to this,
in [7] the concept of Blind Compressive Sensing (BCS) has been
introduced, which aims at simultaneously learning the sparsity
basis and reconstructing the signal/image. The only useful prior
in BCS is that there exists some basis in which the original signal
x is sparse. It has been demonstrated that, without knowing the
sparsity basis, BCS can achieve similar results with those CS meth-
ods which rely on the prior knowledge of the sparsity basis.

However, BCS still suffers from two problems when it is applied
to images. First, compared with block-based sparsity, the global
image sparsity ignores the local image features and BCS
approaches based on it cannot obtain the competitive reconstruc-
tion results. Second, BCS only exploits the weaker prior and does
not take use of other useful priors, the sampling rate on an image
required by BCS is still very high in practice.

More recently, the concept of sparsity in CS has evolved into
various sophisticated forms including model-based or Bayesian,
nonlocal sparsity [8–11], structured sparsity and group sparsity
[12–14], where exploiting high-order dependency among sparse
coefficients has shown beneficial to CS image recovery. Therefore,
it is desirable to pursue more efficient solutions that can exploit
the benefits of both BCS and high-order dependency among sparse
coefficients.

Motivated by low-rank regularization based approaches which
can exploit high-order dependency among similar blocks and have
shown the state-of-the-art performance in compressive sensing
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[15], face recognition [16–18], image denoising [19] and saliency
detection [20]. In this paper, we take use of block sparsity and non-
local low-rank priors simultaneously for blind compressive sensing
image recovery (BCS-BSNLR). Compared with traditional BCS
approaches, the contributions of our proposed BCS-BSNLR are
mainly two-folded. First, BCS-NLSR explicitly and effectively char-
acterizes the intrinsic block sparisty and nonlocal low-rank prop-
erty of natural image simultaneously in a unified framework,
which can help to reduce the sampling rate without sacrificing
the quality of the reconstructed image. It is the first algorithm to
do this in BCS works. Second, the images are divided into overlap-
ping blocks rather than non-overlapping blocks, reducing artifacts
in reconstructed images.

Related work. Some research works have been done on blind
compressive sensing. But the algorithms they proposed are signif-
icantly different from our BCS-BSNLR. Refs. [7,21,22] all exploited
the whole image sparsity in blind compressive sensing. Since
learning sparsity basis P from compressive measurements did not
admit a unique solution, Refs. [7,23] imposed different additional
structure on P or x. This is quite different from our BCS-BSNLR,
which exploits block-based sparsity that can capture the local
image features effectively. In addition, we characterize the nonlo-
cal low-rank property as an additional prior knowledge to decrease
the freedom degree of BCS and take K-SVD [24] to estimate the
sparisty basis. Refs. [25,26] focused on learning a global block-
based analysis operator/dictionary from compressive measure-
ments. However, each block is considered independently in their
procedure of reconstruction which ignores the relationship among
blocks, resulting in inaccurate sparse coefficients. In contrast, our
approach takes advantage of nonlocal low-rank property which
can exploit high-order dependency among sparse coefficients of
similar blocks as an additional prior knowledge. Moreover, com-
pared with [25,26] which divided the image into many non-
overlapping blocks, BCS-BSNLR divides the image into overlapping
blocks and groups a set of similar blocks, reducing artifacts in
reconstruction image. Since our proposed BCS-BSNLR approach
exploits not only block sparsity prior but also nonlocal low-rank
prior, it can reduce the required sampling rate and obtain better
results.

The reminder of this paper is organized as follows. The pro-
posed BCS based on block sparsity and nonlocal low-rank priors
is presented in details in Section 2. In Section 3, we show that
the optimization problem can be solved efficiently by the alternat-
ing direction multiplier method. In Section 4, we give numerical
results demonstrating the effectiveness of the BCS-BSNLR
approach. Finally we provide some concluding remarks in
Section 5.

2. Problem statement

Assume an image x 2 Rn is of size n, and its sensing measure-
ment matrix is denoted by U 2 Rm�nðm� nÞ, BCS aims to recover
the image x from the few measurements y 2 Rm, i.e. y ¼ Ux.
Since m� n, the matrix U is rank-deficient, there exists more
than one x 2 Rn that can yield the same measurements y. To
recover original image x from the measurements y, some prior
knowledges of x are needed. In this paper, we exploit both block
sparsity and low-rank property of the coefficient matrix of each
block group.

Suppose xj 2 Rd denotes an image block of size
ffiffiffi
d
p
�

ffiffiffi
d
p

at posi-
tion j (j ¼ 1;2 . . . e), where d is the size of each block vector and e is
the number of image blocks. For each block xj 2 Rd, it searches in
its neighborhood for h best matched blocks such that each
matched block xjc satisfies kxj � xjck2 < e0, where e0 is a predefined

threshold. These matched blocks form the j-th block group
Xj ¼ ½xj1 ; xj2 ; . . . xjh � 2 Rd�h, which has a low-rank property. Then
the recovery problem is formulated:

ðx;Kj;DjÞ ¼ argmin
x;Kj ;Dj

ky�Uxk22 þ
X
j

ðkrankðKjÞ þ jkKjk0Þ

s:t: Pjx ¼ DjKj ð2Þ

where Pj ¼ ½pj1
;pj2

; . . .pjh
� is an operator that exacts the block group

Xj from the image x and pjc
is the block exaction operator. Dj is an

unknown sparsity basis in which each block group Xj can be spar-
sely represented and Kj is the sparse vector that satisfies
Xj ¼ DjKj. rankð�Þ is used to calculate the rank of the matrix. In the
next Section, we will show that the proposed objective function
can be efficiently solved by the method of alternative minimization.
Fig. 1 gives the flow chart of our BCS-BSNLR.

3. Optimization algorithm

It is very difficult to solve the above constrained optimization
problem consisting of rank regularization terms. So we employ
the alternating direction method of multipliers (ADMM), which
has been widely used in compressive sensing [15], to divide this
complicated problem into simpler sub-problems and address them
iteratively. By adding a set of auxiliary variables fZjg, the recovery
problem can be reformulated as

ðx;Kj; Zj;DjÞ ¼ argmin
x;Kj ;Dj

ky�Uxk22 þ
X
j

ðkrankðZjÞ þ jkKjk0Þ

s:t: Pjx ¼ DjKj;Kj ¼ Zj

ð3Þ

This objective function given has the desirable property that is
separable in four variables. Thus, this function can be minimized
over one variable by fixing the other variables. Let ff j; gjg be a set
of Lagrangian multipliers, we can write the augmented Lagragian
function of this constrained problem as follows:

ðx;Kj;Zj;DjÞ¼argmin
x;Kj ;Zj ;Dj

ky�Uxk22

þ
X
j

krankðZjÞþb Pjx�DjKjþ
f j
b
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F

 !
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The optimization of Eq. (4) consists of the following four sub-
problems:

Dkþ1
j ¼ argmin

Dj

Pjxk � DjK
k
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b
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xkþ1 ¼ argmin
x

ky�Uxk22 þ b
X
j

Pjx� Dkþ1
j Kkþ1

j þ f kj
b
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