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a b s t r a c t

Region-based active contour models are effective in segmenting images with poorly defined boundaries
but often fail when applied to images containing intensity inhomogeneity. The traditional models utilize
pixel intensity and are very sensitive to parameter tuning. On the other hand, machine learning algo-
rithms are highly effective in handling inhomogeneities but often result in noise from misclassified pix-
els. In addition, there is no objective function. We propose a framework which integrates machine
learning with a region-based active contour model. Classification probability scores from machine learn-
ing algorithm, which are regularized using a non-linear function, are used to replace the pixel intensity
values during energy minimization. In our experiments, we integrate the k-nearest neighbours and the
support vector machine with the Chan-Vese method and compare the results obtained with the tradi-
tional methods of Chan-Vese and Li et al. The proposed framework gives better accuracy and less sensi-
tive to parameter tuning.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Image segmentation plays a significant role in computer vision
and medical image analysis. Numerous segmentation methods
have been proposed but none is universally applicable [1]. A num-
ber of modern approaches using energy minimization for image
segmentation have been intensively studied, starting from the
snake model introduced by Kass et al. [2]. A popular energy mini-
mization approach is the level set method (LSM), which is widely
used in medical image analysis. The basic idea of the LSM was first
described in [3] and popularized by [4]. It was subsequently
applied to image segmentation [5–7].

Generally, existing image segmentation models using level set
methods can be grouped into two categories: edge-based models
and region-based models [8–11]. Edge-based models utilize edge
information while region-based models utilize a region descriptor
to control the motion of the active contour [12]. Region-based
models are not sensitive to objects with poorly defined boundaries
but are sensitive to inhomogeneity of image intensities, i.e., the

overlapping of the intensity ranges. Also, they are sensitive to
parameter tuning [13,14] which are not desirable in practical use.

Another popular approach is the use of machine learning algo-
rithms to classify each pixel based on training data. Many algo-
rithms are described in the literature, e.g., the k-nearest
neighbors (k-NN), support vector machine (SVM), extreme
machine learning, etc [15,16]. These algorithms can handle com-
plex patterns, but further post-processing such as morphological
operations are often required to obtain the final solution without
employing an objective function.

To overcome the limitation of those approaches, a number of
studies includes classifier probability scores from overall pixel
classification instead of pure intensity values [17–21]. Different
from existing methods, our framework works in a simpler manner.
The scores are written in a matrix in the range of ½0;1� which are
subsequently regularized by a non-linear function. Finally, the
region-based active contour model proposed by Chan and Vese is
applied to the matrix to find the optimal solution. The solution
thus converges faster and is less sensitive to parameter tuning of
the LSM.

2. Proposed framework

The proposed framework can be constructed from any classifi-
cation algorithm and applied to any region-based model with an
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LSM. Here, we employ the k-NN and SVM to generate a matrix of
classifier probability scores. The matrix is regularized and fed to
the popular region-based active contour model proposed by Chan
and Vese [12]. We present a review of these methods in this
section.

2.1. Region-based active contour model

Chan and Vese introduced an energy functional Fðc1; c2;CÞ
defined by

Fðc1; c2;CÞ ¼ l � LengthðCÞ þ v � AreaðinsideðCÞÞ
þ k1

Z
insideðCÞ

ju0ðx; yÞ � c1j2dxdy

þ k2

Z
outsideðCÞ

ju0ðx; yÞ � c2j2dxdy ð1Þ

where C is the evolving curve, c1 and c2 are, respectively, the values of
u inside and outside of C;lP 0;v P 0; k1; k2 > 0 are constants, and
u0 is the input image. The minimization problem is expressed by

inf
c1 ;c2 ;C

Fðc1; c2;CÞ ð2Þ

and can be solved by applying the level set method introduced by
Osher and Sethian [4]. The curve C is implicitly represented by
the zero level set of a Lipschitz function /ðx; y; tÞ:
CðtÞ ¼ fðx; yÞj/ðx; y; tÞ ¼ 0g ð3Þ
where t is an artificial time variable. For t ¼ 0;/ðx; y;0Þ ¼ /0ðx; yÞ
denotes the initial contour. After further derivation, Chan and Vese
proposed a gradient flow

@/
@t

¼ d�ð/Þ l div
r/
jr/j

� �
� v � k1ðu0 � c1Þ2 þ k2ðu0 � c2Þ2

� �

¼ 0 in X;
d�ð/Þ
jr/j

@/

n
! ¼ 0 on @X ð4Þ

where d� is the regularized Dirac function, X is a bounded open sub-

set of R2 with @X its boundary, n
!
denotes the exterior normal to the

boundary, and @/

n
! denotes the normal derivative of / at the bound-

ary. Eq. (4) contains a number of parameters that should be tuned
carefully [12].

2.2. Classifier probability scores

Classification algorithms are used to generate a matrix of classi-
fier probability scores from the image u0. In this paper, two classi-
fication algorithms, where each of the outputs has a different
range, are investigated, namely, k-NN and SVM.

2.2.1. k-NN
k-NN provides scores in the range ½0;1� which can be imple-

mented easily using the fuzzy k-NN rule. This rule is derived from
the fuzzy set [22] and the k-NN classifier in machine learning [23].
Given a reference set XR ¼ fxigmR

i¼1, and a set of l-dimensional vec-
tors W ¼ fwigmR

i¼1;wi ¼ ðwi;1;wi;2; . . . ;wi;lÞ, where l and mR are the
number of classes and the number of elements in the reference
set XR, respectively, the following property holds on the fuzzy k-
NN rule:

Xl

j¼1

wi;j ¼ 1;0 6 wi;j 6 1: ð5Þ

For 1 6 i 6 mR and 1 6 j 6 l , the value of wi;j is the membership
value of the i-th object to class j. For a particular x to be classified,
the set K of indices corresponding to the classes of k-nearest neigh-

bours of x in XR is obtained. Instead of applying the majority vote in
the original k-NN, the fuzzy k-NN rule generates a fuzzy decision-
vector computed by

v ¼ 1
k

X
s2K

ws: ð6Þ

The maximum v j;1 6 j 6 l where v ¼ ðv1;v2; . . . ;v lÞ is used to
define the object class in the original k-NN.

2.2.2. Support vector machine
An SVM is a supervised learning method that classifies data

using the best separation hyperplane which separates the data of
a class from those of another, and gives the largest margin between
these two classes [24,25]. The classification is performed using a
sign function classðxÞ ¼ sgnðhðxÞÞ where hðxÞ is the separating
hyperplane for the two classes. For linearly separable data in
dimension d, the hyperplane is expressed by

hðxÞ ¼ wT
0xþ b0 ð7Þ

where w0 2 Rd is the optimal weight vector, x 2 Rd is the data, and
b0 is the optimal bias. Since it may be difficult to separate the data
in the original input space, a transformation of the data into a
higher dimensional space through function u is introduced. Then
hðxÞ can be expressed as

hðxÞ ¼ wT
0uðxÞ þ b0: ð8Þ

Finding an explicit u is often difficult; instead, kernel [26,27]
Kðx;xiÞ is used to compute directly the dot product expressed by

hðxÞ ¼
XN
i¼1

aiyiKðx;xiÞ þ b0 ð9Þ

where ai is the estimated SVM parameter, and yi 2 fþ1;�1g is the
desired class for the corresponding xi. The value of hðxÞ is the
SVM evaluation score and the sign is the predicted class [28].

Evaluation scores from classification algorithms generally fall in
the range ½0;1� or ð�1;þ1Þ. The scores of the k-NN are of the first
type while those of the SVM are of the second. Methods are avail-
able to convert the second type to a prior probability score [29].

2.3. Regularization for classifier probability score

Originally, classifiers generate binary results by applying a hard
limiter function to the probability scores. Let s 2 ½0;1� be a proba-
bility score and q a regularization function that maps s to a real
value in ½0;1�. The traditional classifier generates binary results by

qðsÞ ¼ 1 if s P 1
2 ; ðaÞ

0 if s < 1
2 : ðbÞ

(
ð10Þ

Instead of refining these binary scores using machine learning
algorithms, we retain the probability scores which are processed
further by applying any region-based active contour model. This
aims to find an optimal solution where the function qðsÞ can be
simply expressed by

qðsÞ ¼ s: ð11Þ
The plot of (10) is shown in Fig. (1) as q1 and that of (11) as q2.

The former is binary while the latter is linear.
Based on our preliminary results, a non-linear function q

approximately lying under q2 for s > 0:5 and above q2 for s < 0:5
leads to better results. It is worth noting the properties of a good q:

(a) the domain, s, as well as the range, qðsÞ, lie in ½0;1�,
(b) it is monotonically increasing,
(c) the following equations hold
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