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a b s t r a c t 

In this paper, a new random subspace based ensemble sparse representation (RS_ESR) algorithm is pro- 

posed, where the random subspace is introduced into sparse representation model. For high-dimensional 

data, the random subspace method can not only reduce dimension of data but also make full use of effec- 

tive information of data. It is not like traditional dimensionality reduction methods that may lose some 

information of original data. Additionally, a joint sparse representation model is emloyed to obtain the 

sparse representation of a sample set in the low dimensional random subspace. Then the sparse repre- 

sentations in multiple random subspaces are integrated as an ensemble sparse representation. Moreover, 

the obtained RS_ESR is applied in classical clustering and semi-supervised classification. The experimental 

results on different real-world data sets show the superiority of RS_ESR over traditional methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A large amount of data is easily obtained with the ever- 

accelerated updating of information technology. As an effective 

technique for analyzing the sparsity of large data, sparse represen- 

tation (SR) [1-2] method emerges as the times require. In recent 

years, SR has attracted attention of many researchers and been 

successfully applied in image classification and other fields, such as 

signal reconstruction [3] , image super-resolution [4] , visual track- 

ing [5] , face recognition [6–7] , etc. At first, Wright et al. [8] pro- 

posed a sparse model-based method for facial images classification. 

During the same time period, a sparse subspace clustering algo- 

rithm was presented by Elhamifar et al. [9] , which combines the 

SR technique with spectral clustering to segment different moving 

objects in the video. Hereafter, many improved sparse representa- 

tion based classification methods keep emerging [10-17] . 

Although sparse representation based classification methods are 

very effective, low memory problem occurs when sparse represen- 

tation is used to deal with high dimensional data. Since sparse 

representation method updates the similarity between every two 

samples in each iteration, it needs massive computation and stor- 

age, especially for the high dimensional dataset. In fact, the data 

usually lies in a high dimensional space in many real applications. 

It is well known that an effective method to handle the high di- 

mensional data is dimensionality reduction. The common dimen- 
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sionality reduction approaches include principal component anal- 

ysis [18] , linear discriminant analysis [19] , locality preserving pro- 

jections [20] , etc. After the rise of SR, a new dimensionality re- 

duction method called sparsity preserving projections (SPP) was 

proposed [21] . But whatever dimensionality reduction approach is 

used, the reduction of the dimension of data in the original space 

results in information loss. In this case, the spatial relationship 

among the samples in lower dimensional space may be changed, 

which affects the following clustering or classification results. 

To make full use of potential information, a random subspace 

method is used in this paper. The main difference between it 

with the traditional dimensionality reduction approaches is that 

the random subspace method randomly samples many lower- 

dimensional subspaces from the original high-dimensional space. 

The random subspace method has been successfully applied in 

classifier ensemble [22–23] , which is more robust to noise and 

redundant information than a single classifier. This indicates that 

several random lower-dimensional subspaces include more effec- 

tive information than the original high-dimensional space. The suc- 

cess of the random subspace method in classifier ensemble moti- 

vates us to apply it to reduce dimension. 

In this paper, we combine the SR with the random subspace, 

and propose a new algorithm called random subspace based en- 

semble sparse representation (RS_ESR). Firstly, multiple subspaces 

are obtained from the original high-dimensional space by using 

the random subspace method. Then a joint sparse representation 

model is used to simultaneously calculate the sparse representa- 

tion of samples in each subspace. Afterwards, the sparse repre- 
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sentations in all lower-dimensional subspaces are integrated into 

an ensemble sparse representation. Finally, the proposed RS_ESR 

is applied in dataset clustering, image segmentation and semi- 

supervised classification. 

The remaining parts of this paper are organized as follows. 

Section 2 reviews the classical SR model and random subspace 

method. The random subspace based joint SR model and RS_ESR 

method are described in Section 3 . Section 4 presents the RS_ESR 

based clustering and semi-supervised classification algorithms. Ex- 

perimental results in different datasets and images are contained 

in Section 5 . Finally, Section 6 provides conclusions and discussion 

of possible improvements in future work. 

2. Related work 

2.1. Sparse representation (SR) 

The fundamental of SR is that any one x ∈ R d of a dataset can 

be represented by a linear combination of bases in a dictionary 

D ∈ R d × l ( d � l ). The weights of all atoms in the linear combination 

are sparse and named as SR. The SR z of sample x can be obtained 

by solving the following model [1] 

min 

z 
‖ 

z ‖ 0 s.t. x = D z , (1) 

where ‖ · ‖ 0 is � 0 norm of a vector. The objective function in (1) is 

an NP-hard problem, so it is replaced with 

min 

z 
‖ 

z ‖ 1 s.t. x = D z , (2) 

where ‖ · ‖ 1 is � 1 norm of a vector. 

2.2. Random subspace 

The random subspace [24] method was first presented in de- 

cision forest, in which multiple decision trees were generated in 

multiple random subspaces and then integrated into a classifier. On 

that basis, random forest [25] and rotation forest [26] were con- 

secutively put forward. The method to get the random subspace 

includes two steps, as detailed in Algorithm 1 . 

One possible problem is that multiple lower-dimensional 

datasets obtained by the random subspace method may not in- 

clude the discriminative information of original dataset. In fact, it 

seldom happens. The larger q and p , the smaller the probability 

that no discriminative information is selected in q random sub- 

spaces is. The specific reasons have been analyzed in [24] and [27] , 

so we will not cover them in this paper. 

3. Random subspace based ensemble sparse representation 

(RS_ESR) 

3.1. Random subspace based ensemble sparse representation 

A proposed multi-task low-rank affinity pursuit (MLAP) [28] al- 

gorithm integrated multiple types of features and effectively used 

cross-feature information of multiple features. Inspired by the 

MLAP algorithm, we consolidate multiple random subspace sets in 

a similar way. But a great deal of computer’s internal storage and 

computer time are spent to solve the nuclear norm of the matrix in 

MLAP. Thus, to improve the efficiency of algorithm, we introduce a 

novel random subspace based joint sparse representation model 

min 

Z 1 , ··· , Z q 

q ∑ 

t=1 

(∥∥Z t 
∥∥

1 
+ α

∥∥S t − S t Z t 
∥∥2 

F 

)
+ β‖ 

Z ‖ 2 , 1 

s.t. S t = X 

(
r t 
)
, diag 

(
Z t 

)
= 0 , (4) 

where X denotes the data set in original space; S t is t th random 

subspace set of X obtained by Algorithm 1 ; Z t is sparse representa- 

tion of S t , and ‖ Z t ‖ 1 = 

∑ 

i, j | Z t i j 
| ; ‖ · ‖ F is Frobenius norm; α > 0 and 

β > 0 are parameters to balance the effect of different parts; the 

n 2 × q matrix Z is constructed in the same way as the MLAP algo- 

rithm; ‖ Z‖ 2 , 1 = 

∑ 

i 

√ 

( 
∑ 

j | Z i j | ) 2 . The constraint diag( Z t ) = 0 is to 

avoid that the solution of (4) is the identity matrix. 

We employ the inexact augmented Lagrange multiplier method, 

also called alternating direction method of multipliers (ADMM) 

[29] to solve (4) . Firstly, we introduce two auxiliary variables K 

t 

and L t , so the objective function in (4) is converted into equivalent 

form as follows: 

min 

K 1 , ··· , K q 
L 1 , ··· , L q 
Z 1 , ··· , Z q 

q ∑ 

t=1 

(∥∥K 

t 
∥∥

1 
+ α

∥∥S t − S t L t 
∥∥2 

F 

)
+ β‖ 

Z ‖ 2 , 1 

s.t. Z t = K 

t , diag( K 

t ) = 0 , Z t = L t 

Then minimize the following augmented Lagrange function 

β‖ Z ‖ 2 , 1 + 

q ∑ 

t=1 

(∥∥K t 
∥∥

1 
+ α

∥∥S t − S t L t 
∥∥2 

F 

)

+ 

q ∑ 

t=1 

(〈
U 

t , Z t − K t 
〉
+ 

〈
V t , Z t − L t 

〉
+ 

μ

2 

∥∥Z t − K t 
∥∥2 

F 
+ 

μ

2 

∥∥Z t − L t 
∥∥2 

F 

)
where U 

1 , ���, U 

q and V 

1 , ���, V 

q are Lagrange multipliers and 

μ> 0 is a penalty parameter. By the ADMM method, the problem 

(4) is divided into several sub-problems which have closed-form 

solutions. The solution procedure of (4) is detailed in Algorithm 2 . 

In Algorithm 2 , we utilize the soft thresholding operator [30] to 

solve (5) and the objective function in (6) can be solved according 

to Lemma 3.2 in [31] . 

Let ˜ Z 1 , · · · , ̃  Z t , · · · , ̃  Z q be the optimal solution of the problem 

(4) . These sparse representations ˜ Z 1 , · · · , ̃  Z t , · · · , ̃  Z q in random sub- 

spaces are integrated by 

E ii ′ = 

√ 

q ∑ 

t=1 

(
˜ Z t 

ii ′ 
)2 

, (7) 

where ˜ Z t 
ii ′ (1 ≤ i ≤ n , 1 ≤ i ′ ≤ n ) and E ii ′ are the i ′ th element in i th 

row of ˜ Z t and E respectively, and E is viewed as ensemble sparse 

representation. 

From the methodology point of view, the obtained ensemble 

sparse representation can be directly used for existing cluster- 

ing and classification methods based on sparse representation. On 

the other side, by integrating the multiple sparse representations 

in subspaces, effective information in multiple lower-dimensional 

datasets is reinforced and redundant information is weakened. So 

the integrated ensemble sparse representation is more helpful for 

the clustering and classification than the spare representations in 

subspaces. Algorithm 3 summarizes the generation process of the 

ensemble sparse representation E . It reflects the similarity among 

samples in the original dataset X . The larger the ensemble sparse 

representation coefficient E ii ′ is, the more similar the correspond- 

ing i th and i ′ th samples are, and vice versa. 

3.2. Computational complexity analysis 

The computational complexity of RS_ESR is analyzed in this 

subsection. We suppose that the number of iterations is e . The 

time complexity of the proposed RS_ESR algorithm is O ( n 2 pqe ). In 

fact, if the random subspace method is not used for RS_ESR, the 

RS_ESR algorithm is equivalent to the existing L1-graph [32] . The 

computing complexity of L1-graph is O ( n 2 de ). Generally, the ini- 

tial dimension of sample d is close to pq . So the time complexi- 

ties of RS_ESR and L1 are roughly equivalent. Furthermore, since 
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