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a b s t r a c t 

Multi-label classification associates an unseen instance with multiple relevant labels. In recent years, a 

variety of methods have been proposed to handle the multi-label problems. Classifier chains is one of 

the most popular multi-label methods because of its efficiency and simplicity. In this paper, we consider 

to optimize classifier chains from the viewpoint of conditional likelihood maximization. In the proposed 

unified framework, classifier chains can be optimized in either or both of two aspects: label correla- 

tion modeling and multi-label feature selection. In this paper we show that previous classifier chains 

algorithms are specified in the unified framework. In addition, previous information theoretic multi-label 

feature selection algorithms are specified with different assumptions on the feature and label spaces. 

Based on these analyses, we propose a novel multi-label method, k -dependence classifier chains with 

label-specific features, and demonstrate the effectiveness of the method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Unlike traditional single-label classification where each instance 

is associated with only one label, Multi-Label Classification (MLC) 

refers to the problems assigning multiple labels to a single test in- 

stance. MLC can be seen in a wide range of real-world applications 

such as text categorization, semantic image classification, bioinfor- 

matics analysis and video annotation. In fact, MLC is ubiquitous in 

real-world problems. For example, a news article is possibly rele- 

vant to multiple topics, like “science”, “technology”, “economics”, 

“politics”, etc; a single image is probably associated with a set of 

semantic concepts, like “sky”, “sea”, “field”, “building”, etc. 

To tackle such multi-label problems, various MLC methods have 

been proposed. The existing MLC methods fall into two broad cat- 

egories: problem transformation and algorithm adaptation [1] . As 

a convenient and straightforward way for MLC, problem transfor- 

mation strategy transforms an MLC problem into one or a set of 

single-label classification problems, and learns one or a family of 

classifiers for modeling the single-label memberships. Most of pop- 

ular baseline MLC methods, such as Binary Relevance (BR) [2] , Cal- 

ibrated Label Ranking (CLR) [3] , and Label Powerset (LP) [4] , be- 

long to this strategy. Algorithm adaptation strategy induces con- 

ventional machine learning algorithms in the multi-label settings. 
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Various MLC methods adopting one of the above two strategies 

have been developed and succeeded in dealing with multi-label 

problems. 

Classifier Chains (CC) [5] is one of the most promising MLC 

methods which follow the problem transformation strategy. Orig- 

inated from BR which simply ignores label correlations, CC con- 

structs a chain structure on labels and determines the pres- 

ence/absence of the current label under the condition of previously 

determined labels. CC succeeds in modeling label correlations and 

achieves higher classification accuracy at similar computational ex- 

pense with BR. Although CC-based methods have achieved much 

success in various applications [5–7] , further improvement in clas- 

sification accuracy is still required. Here we seek the possibility 

to improve CC in terms of two aspects: label correlation modeling 

and multi-label feature selection. The intuition behind this idea is 

that all of the previously determined labels are not always nec- 

essary for decision on the current label (necessity of limiting la- 

bel correlations), and irrelevant and redundant features are usu- 

ally harmful for the performance of CC (necessity of feature selec- 

tion). In this paper, we propose a unified framework comprising of 

both label correlation modeling and multi-label feature selection 

via conditional likelihood maximization of MLC. 

The contributions of this work are cast into three-folds. First, 

we propose a general framework taking label correlation modeling 

and multi-label feature selection into account via conditional like- 

lihood maximization. Second, the k -dependence classifier chains 

method is proposed based on greedy iterative optimization of a 

sub-problem of likelihood maximization. Third, a general infor- 
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mation theoretic feature selection method is proposed for MLC, 

where three terms on relevancy, redundancy and label correlations 

are considered for feature subset selection. 

The rest of this paper is organized as follows. Section 2 dis- 

cusses the related works, focusing mainly on CC-based methods 

and information theoretic feature selection. Section 3 illustrates 

the unified framework for MLC by conditional likelihood max- 

imization, and induces two sub-problems: model selection and 

multi-label feature selection. Sections 4 and 5 present the solu- 

tions on model selection and multi-label feature selection, respec- 

tively. Section 6 summarizes several theoretical findings during the 

development of the proposed method. Section 7 discusses the im- 

plementation issues. Section 8 introduces the experiments, and re- 

ports the results. Finally, Section 9 concludes this paper and dis- 

cusses the further research. 

2. Related works 

Previous efforts have been paid on MLC in terms of various 

viewpoints, such as label correlations modeling [4,5] , loss function 

analysis [6,8,9] , large-scale learning [10,11] and dimension reduc- 

tion [12–14] . In this paper we concentrate mainly on two aspects: 

label correlations modeling and dimension reduction. It has been 

shown in a number of researches [3–5] that modeling label cor- 

relations is very crucial to perform accurate classification. On the 

other hand, various dimension reduction algorithms, including fea- 

ture selection [15,16] and feature extraction [12,17] , have been em- 

ployed in MLC, in order to simplify the learning phase and over- 

come the curse of dimensionality. 

In order to capture label correlations, Classifier Chains (CC) 

based methods [5–7] have been proposed at tractable computa- 

tional complexity. CC-based methods originates from Binary Rel- 

evance (BR) [2] , which simply decomposes a multi-label problem 

into a set of binary classification problems, totally ignoring label 

correlations. In this sense, BR is actually a hamming loss risk min- 

imizer [8] . In CC [5] , label correlations are expressed in an ordered 

chain of labels. In the learning phase, according to a predefined 

chain order, it builds a set of binary classifiers such that each clas- 

sifier predicts the correct value of a target label by referring to the 

correct values of all the preceding labels in addition to the fea- 

tures. In the prediction phase, it predicts in turn the value of the 

target label using the previously estimated values of its parent la- 

bels as extra features. However, the performance of CC is sensitive 

to distinct chain orders, and it suffers from the problem of error 

propagation in the prediction phase. Several effort s have been paid 

to overcome the limitations of CC. Bayesian Classifier Chains (BCC) 

[7] introduces a directed tree as the probabilistic structure over la- 

bels. The directed tree is established by randomly choosing a label 

as its root and by assigning directions to the remaining edges. It 

shares the same model with CC, but restricts the number of parent 

labels no more than 1, which limits its expression ability on label 

correlations. Probabilistic Classifier Chains (PCC) [6] aims to solve 

the error propagation problem, providing better estimates than CC 

at the expense of higher processing time. Although PCC shares the 

learning model with CC, it chooses the best predictor by search- 

ing the Maximum A Posterior (MAP) assignment in an exhaustive 

manner. The exponential cost of PCC in prediction limits its appli- 

cation. To make the prediction tractable for PCC, PCC-beam [18] is 

proposed by applying beam search to find an approximate MAP as- 

signment of labels to a test instance. MCC [19] utilizes the Monte 

Carlo scheme to find the sub-optimal chain order and perform effi- 

cient inference for the MAP assignment in the learning and predic- 

tion phase, respectively. In [20] , the dynamic programming tech- 

nique is used to search the globally optimal chain order of CC. In 

addition, to speed up the search procedure, a greedy approach is 

proposed to find locally optimal CC. In a recent work [21] , the Clas- 

sifier Trellis (CT) method is proposed for scalable MLC by extend- 

ing the 1-dimensional chain of CC to a 2-dimensional trellis struc- 

ture. CT saves label correlations in the trellis structure, where each 

label depends only on its adjacent labels. In this way, CT enables 

to limit the number of parent labels, and thus becomes scalable to 

the MLC problems with a large number of labels. 

In terms of Feature Space Dimensionality Reduction (FS-DR), a 

variety of traditional supervised dimension reduction approaches 

have been specifically extended to match the setting of MLC. In 

[22] , a supervised Multi-label Latent Semantic Indexing (MLSI) ap- 

proach is developed to map the input features into a subspace 

by preserving the label information. By maximizing the feature- 

label dependence under the Hilbert-Schmidt independence crite- 

rion, Multi-label Dimension reduction via Dependence Maximiza- 

tion (MDDM) [12] derived a closed-form solution to efficiently find 

the projection into the feature subspace. In addition, several tra- 

ditional dimension reduction techniques, such as Canonical Corre- 

lation Analysis (CCA) and Linear Discriminant Analysis (LDA), are 

proposed to handle the MLC problem [23,24] . In the field of fea- 

ture selection, an information theoretic approach for Label Power- 

set (LP) has been developed in [25] . The method introduces a near- 

est neighbor estimator for computing mutual information, and ap- 

plies pruned LP to control the problem size. The multivariate mu- 

tual information criterion is used in [26] to select useful features. 

Due to its computational inefficiency, an approximate solution is 

proposed to estimate the multivariate mutual information. In [15] , 

the authors extend the feature selection framework in [27] to han- 

dle two MLC decomposition methods, BR and LP, which achieves 

significant improvement compared with several multi-label feature 

selection methods. In fact, all the methods mentioned above can 

be regarded as global FS-DR methods , since they attempt to find 

an identical feature subspace globally for all the labels. However, 

it is more reasonable to think that each label holds a specific 

supporting feature subset. To overcome the limitations, local FS- 

DR methods [16,17] have been proposed to find label-specific fea- 

tures. In [17] , Label-specIfic FeaTures (LIFT) are extracted by con- 

ducting cluster analysis on the positive and negative instances of 

each label. The Learning Label-Specific Features (LLSF) method is 

proposed in [16] . LLSF selects label-specific features by optimizing 

the least squares problem with constraints of label correlations and 

feature sparsity. 

3. The unified framework for MLC via likelihood maximization 

3.1. Multi-label classification 

In the scenario of MLC, an observation ( x, y ) consists of a 

d -dimensional feature vector x and a q -dimensional target la- 

bel vector y , drawn from the underlying random variables X = 

(X 1 , . . . , X d ) ∈ R 

d and Y = (Y 1 , . . . , Y q ) ∈ { 0 , 1 } q , respectively. For an 

observation of labels y = (y 1 , . . . , y q ) , y j = 1 if the j th label is rele- 

vant to the instance, and y j = 0 otherwise, j = 1 , . . . , q . 

The task of MLC is to find an optimal classifier h : R 

d → { 0 , 1 } q , 
which assigns a label vector ˆ y = h (x ) to each instance x such that 

h minimizes a loss function between 

ˆ y and y . For a loss function 

L ( Y , h ( X )), the optimal classifier h ∗ is 

h 

∗ = arg min 

h 

E xy L (Y , h (X )) . (1) 

Specifically, given the subset 0–1 loss L s (y , ̂  y ) = 1 y � = ̂ y , where 1 (·) 
denotes the indicator function, Eq. (1) can be rewritten in a point- 

wise way, 

ˆ y = h 

∗(x ) = arg max 
y 

p(y | x ) . (2) 

Here we use p ( Y | X ) to represent the conditional probability distri- 

bution of label variables Y given feature variables X . According to 
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