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a b s t r a c t 

This article studies the asymptotic behavior of mean partitions in consensus clustering. We show that the 

mean partition approach is consistent and asymptotic normal under mild assumptions. To derive both 

results, we represent partitions as points of some geometric space, called orbit space. Then we draw on 

results from the theory of Fréchet means and stochastic programming. The asymptotic properties hold for 

continuous extensions of standard cluster criteria (indices). The results justify consensus clustering using 

finite but sufficiently large sample sizes. Furthermore, the orbit space framework provides a mathematical 

foundation for studying further statistical, geometrical, and analytical properties of sets of partitions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Clustering is a standard technique for exploratory data analy- 

sis that finds applications across different disciplines such as com- 

puter science, biology, marketing, and social science. The goal of 

clustering is to group a set of unlabeled data points into several 

clusters based on some notion of dissimilarity. Inspired by the suc- 

cess of classifier ensembles, consensus clustering has emerged as a 

research topic [9,22] . Consensus clustering first generates several 

partitions of the same dataset. Then it combines the sample par- 

titions to a single consensus partition. The assumption is that a 

consensus partition better fits to the hidden structure in the data 

than individual partitions. 

One standard approach of consensus clustering combines the 

sample partitions to a mean partition [4–7,10,14,18,20,21] . A mean 

partition best summarizes the sample partitions with respect to 

some (dis)similarity function. A natural question is the choice of 

sample size. If the sequence of mean partitions fails to converge 

stochastically for growing sample size n , then picking a reasonable 

value for n becomes an additional parameter selection problem. 

Otherwise, if the mean partitions converge stochastically to an ex- 

pected partition, the problem of selecting a sample size n simpli- 

fies to the problem of selecting a sufficiently large n , because we 

have high confidence that nothing unexpected will happen when 

sampling further partitions. In other words, stochastic convergence 

justifies the common practice to draw finite but sufficiently large 

sample sizes. 

Though there is an extensive literature on consensus clustering 

[22] , little is known about the asymptotic behavior of the mean 
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partition approach. Topchy et al. [19] studied the asymptotic be- 

havior of the mean partition approach under the following simpli- 

fying assumptions: 

(A1) The underlying distance is a semi-metric. 1 

(A2) Partitions are hard (crisp) partitions. 

(A3) The expected partition is unique. 

(A4) Partitions strongly concentrate on the expected partition. 

In this contribution, we study the asymptotic behavior of the 

mean partition approach without drawing on assumptions (A2)–

(A4). We show (i) consistency of the mean partitions, (ii) strong 

consistency of the variations, and (iii) a modified version of the 

Central Limit Theorem for mean partitions. We present two vari- 

ants of results (i) and (ii). The first variant assumes that partitions 

form a compact metric space. The second variant requires the Eu- 

clidean space as ambient space and assumes that partitions are 

compared by a continuous cluster criterium. We also draw on con- 

tinuity of the cluster criterium for showing result (iii). since stan- 

dard criteria for comparing partitions are defined on the discrete 

space of hard partitions, we present examples of their continuous 

extensions. We can apply the generalized standard criteria to soft 

partitions and we can analyze the asymptotic behavior of the mean 

partition approach for hard and soft partitions in a unified manner. 

The basic idea to derive the results is to represent partitions 

as points of a geometric space, called orbit space. Orbit spaces are 

well explored, possess a rich mathematical structure and have a 

natural connection to Euclidean spaces [3,11,16] . For the first vari- 

ant of results (i) and (ii), we link the consensus function of the 

1 A semi-metric satisfies all axioms of a metric, but not necessarily the triangle 

inequality. 
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mean partition approach to Fréchet functions [8] , which are well 

explored in mathematical statistics [1,2] . The second variant of re- 

sults (i) and (ii) as well as result (iii) apply results from stochastic 

programming [17] . 

The rest of this paper is structured as follows: Section 2 con- 

structs the orbit space of partitions and introduces metric struc- 

tures. In Section 3 , we introduce Fréchet consensus functions 

and study their asymptotic behavior. Section 4 presents exam- 

ples of continuous extensions of standard cluster criteria. Finally, 

Section 5 concludes with a summary of the main results and with 

an outlook to further research. We present proofs in the appendix. 

2. Geometry of partition spaces 

tictice? In this section, we show that a partition can be rep- 

resented as a point in some geometric space, called orbit space. 

Then we endow orbit spaces P with metrics δ derived from the 

Euclidean space and study their properties. 

2.1. Partitions 

Let Z = { z 1 , . . . , z m 

} be a set of m data points. A partition X of 

Z with � clusters C 1 , . . . , C � is specified by a matrix X ∈ [0, 1] � × m 

such that X 

T 1 � = 1 m 

, where 1 � ∈ R 

� and 1 m 

∈ R 

m are vectors of all 

ones. 

The rows x k : of matrix X refer to the clusters C k of partition X . 

The columns x : j of X refer to the data points z j ∈ Z . The elements 

x kj of matrix X = (x k j ) represent the degree of membership of data 

point z j to cluster C k . The constraint X 

T 1 � = 1 m 

demands that the 

membership values x : j of data point z j across all clusters must sum 

to one. 

By P �,m 

we denote the set of all partitions with � clusters over 

m data points. Since some clusters may be empty, the set P �,m 

also 

contains partitions with less than � clusters. Thus, we consider � ≤
m as the maximum number of clusters we encounter. If the exact 

numbers � and m do not matter or are clear from the context, we 

also write P for P �,m 

. A hard partition X is a partition with matrix 

representation X ∈ {0, 1} � × m . The set P 

+ ⊂ P denotes the subset 

of all hard partitions. 

2.2. The orbit space of partitions 

The representation space X of the set P = P �,m 

of partitions is 

a set of the form 

X = { X ∈ [0 , 1] � ×m : X 

T 1 � = 1 m 

} . 
Then we have a natural projection 

π : X → P, X �→ X = π( X ) 

that sends matrices X to partitions X they represent. The map π
conveys two properties: (1) π is surjective: each partition can be 

represented by at least one matrix, and (2) π is not injective: a 

partition may have several matrix representations. 

Suppose that matrix X ∈ X represents a partition X ∈ P . The 

subset of all matrices representing X forms an equivalence class 

[ X ] that can be obtained by permuting the rows of matrix X in all 

possible ways. The equivalence class of X , called orbit henceforth, 

is of the form 

[ X ] = { P X : P ∈ �} , 
where � is the group of all ( � × � )-permutation matrices. The orbit 

space of partitions is the set 

X / � = { [ X ] : X ∈ X } . 
The orbit space consists of all orbits [ X ], we can construct as de- 

scribed above. Mathematically, the orbit space X / � is the quotient 

space obtained by the action of the permutation group � on the 

set X . The orbits [ X ] are in 1-1-correspondence with the partitions 

X = π( X ) . Therefore, we can identify partitions with orbits and oc- 

casionally write X ∈ X if X = π( X ) . 

2.3. Metric structures 

This section endows the partition space P with metrics that are 

derived by a generic construction principle. As examples, we con- 

sider metrics δp derived from l p -metrics of Euclidean spaces. We 

show that (P, δp ) is a compact metric space for p ≥ 1, and (P, δ2 ) 

is a geodesic space. 

Every metric d on the representation space X ⊂ R 

� ×m induces a 

distance function 

δ : P × P → R , (X, Y ) �→ min { d( X , Y ) : X ∈ X, Y ∈ Y } . (1) 

Note that the minimum in (1) exists, because the orbits [ X ] and [ Y ] 

are finite. As an example, we consider distance functions induced 

by the l p -norm. The l p -norm for matrices X ∈ X is defined by 

|| X || p = 

( 

� ∑ 

k =1 

m ∑ 

j=1 

∣∣x k j 

∣∣p 

) 

1 /p 

for every p ≥ 1. The l p -norm induces the distance function 

δp : P × P → R , (X, Y ) �→ min {|| X − Y || p : X ∈ X, Y ∈ Y } , 
called l p -distance on P, henceforth. 

To show that distances δ on P induced by metrics d on X are 

also metrics, we demand that metric d is permutation invariant. 

We say, a metric d on X is permutation invariant, if 

d( P X , P Y ) = d( X , Y ) 

for all permutations P ∈ �. Permutation invariance means that the 

metric d is invariant under simultaneously relabeling the clusters 

of X and Y . An example of permutation invariant metrics are the 

l p -metrics. The next result shows that permutation invariant met- 

rics on X induce distances on P that are again metrics. 

Theorem 2.1. Let (X , d) be a metric space and let (P, δ) be the par- 

tition space endowed with distance function δ induced by metric d. 

Suppose that d is permutation invariant. Then we have : 

1. The distance δ is a metric. 

2. (P, δ) is a compact space. 

3. (P, δ2 ) is a geodesic space. 

Theorem 2.1 presents a generic way to construct metrics on P . Be- 

ing a compact metric space is a strong property for consistency state- 

ments. Being a geodesic space means that any pair of partitions X and 

Y have a midpoint partition M such that 

δ2 (X, M) = δ2 (Y, M) = 

1 

2 

δ2 (X, Y ) . 

Note that being a geodesic space is a necessary and sufficient con- 

dition for guaranteeing the midpoint property for all pairs of par- 

titions. 

3. Fréchet consensus clustering 

This section first formalizes the problem of consensus cluster- 

ing using the mean partition approach and then studies its asymp- 

totic behavior. For this, we link the consensus function of the mean 

partition approach to the Fréchet function [8] from mathematical 

statistics. Then we show that under normal conditions the mean 

partition approach is consistent and asymptotically normal. 
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