
Pattern Recognition 71 (2017) 187–195 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Indefinite Core Vector Machine 

Frank-Michael Schleif a , b , ∗, Peter Tino 

a 

a School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK 
b University of Applied Sciences Wuerzburg Schweinfurt, Sanderheinrichsleitenweg 20, 97074 Wuerzburg, Germany 

a r t i c l e i n f o 

Article history: 

Received 27 December 2016 

Revised 6 April 2017 

Accepted 1 June 2017 

Available online 3 June 2017 

Keywords: 

Indefinite learning 

Kr ̆ein space 

Classification 

Core Vector Machine 

Nyström 

Sparse 

Linear complexity 

a b s t r a c t 

The recently proposed Kr ̆ein space Support Vector Machine (KSVM) is an efficient classifier for indefinite 

learning problems, but with quadratic to cubic complexity and a non-sparse decision function. In this 

paper a Kr ̆ein space Core Vector Machine (iCVM) solver is derived. A sparse model with linear runtime 

complexity can be obtained under a low rank assumption. The obtained iCVM models can be applied to 

indefinite kernels without additional preprocessing. Using iCVM one can solve CVM with usually trouble- 

some kernels having large negative eigenvalues or large numbers of negative eigenvalues. Experiments 

show that our algorithm is similar efficient as the Kr ̆ein space Support Vector Machine but with substan- 

tially lower costs, such that also large scale problems can be processed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Learning of classification models for indefinite kernels received 

substantial interest with the advent of domain specific similarity 

measures. Indefinite kernels are a severe problem for most ker- 

nel based learning algorithms because classical mathematical as- 

sumptions such as positive definiteness, used in the underlying 

optimization frameworks are violated. As a consequence e.g. the 

classical Support Vector Machine (SVM) [1] has no longer a con- 

vex solution - in fact, most standard solvers will not even con- 

verge for this problem [2] . Researchers in the field of e.g. psy- 

chology [3] , vision [4–6] and machine learning [7,8] have criti- 

cized the typical restriction to metric similarity measures. In fact 

in [8] for multiple examples from real problems it is shown that 

many real life problems are better addressed by e.g. kernel func- 

tions which are not restricted to be based on a metric. Non-metric 

measures (leading to kernels which are not positive semi-definite 

(non-psd)) are common in many disciplines. The use of divergence 

measures [9–11] is very popular for spectral data analysis in chem- 

istry, geo- and medical sciences [12,13] , and are in general not 

metric. Also the popular Dynamic Time Warping (DTW) [14] algo- 

rithm provides a non-metric alignment score which is often used 
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as a proximity measure between two one-dimensional functions 

of different length. In image processing and shape retrieval indefi- 

nite proximities are often obtained by means of the inner distance 

[15] - another non-metric measure. Further examples can be found 

in physics, where problems of the special relativity theory natu- 

rally lead to indefinite spaces. Further prominent examples for gen- 

uine non-metric proximity measures can be found in the field of 

bioinformatics where classical sequence alignment algorithms (e.g. 

smith-waterman score [16] ) produce non-metric proximity values. 

Multiple authors argue that the non-metric part of the data con- 

tains valuable information and should not be removed [6,7] . 

Furthermore, it has been shown [2,7,17] that work-arounds such 

as eigenspectrum modifications are often inappropriate or undesir- 

able, due to a loss of information and problems with the out-of 

sample extension. 

Due to its strong theoretical foundations, Support Vector Ma- 

chine (SVM) has been extended for indefinite kernels in a number 

of ways [18–20] . Initial work focused on preprocessing the kernel 

matrix through heuristics to address the indefiniteness [21] . A re- 

cent survey on indefinite learning is given in [17] . In [2] a stabi- 

lization approach was proposed to calculate a valid SVM model in 

the Kr ̆ein space which can be directly applied on indefinite ker- 

nel matrices. This approach has shown great promise in a num- 

ber of learning problems but has intrinsically quadratic to cubic 

complexity and provides a dense decision model. This paper ex- 

tends the work of [2] by deriving an equivalent optimization prob- 

lem but within the Core Vector Machine (CVM) framework [22] . 

To ensure linear runtime complexity we combine the proposed 
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indefinite CVM with a low rank kernel approximation using the 

Nyström approach [23] . The latter one will also serve as a key ele- 

ment to sparsify the final solution such that an easy out of sample 

extension becomes possible. We empirically demonstrate the effec- 

tiveness of the proposed approach in comparison to the KSVM. 

1.1. Indefinite kernels and existing approaches 

Domain specific proximity measures, such as alignment scores 

in bioinformatics [24] , the edit-distance for structural pattern 

recognition [25] , shape retrieval measures (e.g. the inner distance 

[15] ) and many other ones, generate non-metric or indefinite simi- 

larities or dissimilarities. Classical learning algorithms such as ker- 

nel machines assume metric properties in the underlying data 

space and may not be applicable for this type of data. 

Only few machine learning methods have been proposed for 

non-metric proximity data, e.g. the indefinite kernel fisher discrim- 

inant (iKFD) [26,27] or the probabilistic classification vector ma- 

chine (PCVM) [28] . The iKFD is a classical fisher discriminant ap- 

proach, maximizing the between class variance of the classes, but 

formulated in the Kr ̆ein space, by using an equivalence relation 

to the classical kernel Fisher Discriminant Analysis. 1 In its original 

formulation, iKFD provides models which are naturally non-sparse 

and has cubic runtime complexity. The PCVM, on the other hand, 

constitutes a probabilistic model, operating with basis functions in 

the input space without the need for the existence of feature space 

(through Mercer kernel). While the iKFD is a batch optimization 

algorithm the PCVM is formulated by a gradient descent strategy 

with potentially slow convergence for a number of problems. The 

PCVM algorithms has cubic complexity in the first iterations with 

a substantial speed-up during further iterations due to an inherent 

sparsification strategy. 

Recently the Kr ̆ein space Support Vector Machine (KSVM) was 

proposed in [2] leading to an SVM equivalent formulation, but fully 

formalized in the Kr ̆ein space by replacing the SVM minimization 

problem with a stabilization problem. As shown in [2] it turns 

out that solving the stabilization problem (detailed in [2] ,sec 2) 

can be achieved by flipping the negative eigenvalues of the ker- 

nel spectrum. It is shown in [2] that this strategy has a theoretical 

foundation and by solving the stabilization problem one can ob- 

tain the solution in the original Kr ̆ein space. This allows us to clas- 

sify any new point without having to transform it.iKFD and PCVM 

have been found to be very effective but unlike KSVM, they are 

not based on the sound theoretical framework of the SVM struc- 

tural risk minimization principle (SRM) [1] . Furthermore, there are 

a number of other advantages of KSVM as outlined in [2] . Hence, 

it is very attractive to obtain a low cost SVM formulation in the 

Kr ̆ein space, which is the focus of this paper. 

1.2. Contributions 

We consider the problem of training a Core Vector Machine 

with an indefinite kernel. The present paper is based on [2] in 

which the stabilization idea is proposed and on effective Nyström 

approximation concepts given in [34] , both applicable to indefinite 

kernels. To ensure linear runtime complexity in contrast to at least 

quadratic costs of the KSVM we derive an indefinite Core Vector 

Machine using a low rank kernel approximation which solves the 

original indefinite SVM problem at low costs. We also suggest a 

sparsification procedure to simplify the out of sample extension. 

The Nystöm approximation is not necessary to obtain an indefi- 

nite Core Vector Machine, but to keep linear runtime and memory 

complexity which is lost otherwise. 

1 We do not detail the approach here because the paper will focus on an exten- 

sion of KSVM. 

2. Kr ĕin space SVM 

The Kr ̆ein Space SVM (KSVM) [2] , replaced the classical SVM 

minimization problem by a stabilization problem in the Kr ̆ein 

space. The respective equivalence between the stabilization prob- 

lem and a standard convex optimization problem was shown in 

[2] . Let x i ∈ X, i ∈ { 1 , . . . , N} be training points in the input space X 

, with labels y i ∈ {−1 , 1 } , representing the class of each point. The 

input space X is often considered to be R 

d , but can be any suitable 

space due to the kernel trick. For a given positive C , SVM is the 

minimum of the following regularized empirical risk functional 

J C ( f, b) = min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

+ CH( f, b) (1) 

H( f, b) = 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) 

Using the solution of Eq. (1) as ( f ∗C , b 
∗
c ) := arg min J C ( f, b) one can 

introduce τ = H( f ∗
C 
, b ∗

C 
) and the respective convex quadratic pro- 

gram (QP) 

min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

s.t. 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) ≤ τ (2) 

where we detail the notation in the following. This QP can be also 

seen as the problem of retrieving the orthogonal projection of the 

null function in a Hilbert space H onto the convex feasible set. The 

view as a projection will help to link the original SVM formulation 

in the Hilbert space to a KSVM formulation in the Krein space. First 

we need to repeat a few definitions, widely following [2] . A Kr ̆ein 

space is an indefinite inner product space endowed with a Hilber- 

tian topology. 

Definition 1 (Inner products and inner product space) . Let K be a 

real vector space. An inner product space with an indefinite inner 

product 〈·, ·〉 K on K is a bi-linear form where all f, g, h ∈ K and 

α ∈ R obey the following conditions: 

Symmetry: 〈 f, g〉 K = 〈 g, f 〉 K , linearity: 〈 α f + g, h 〉 K = α〈 f, h 〉 K + 

〈 g, h 〉 K and 〈 f, g〉 K = 0 ∀ g ∈ K implies f = 0 . 

An inner product is positive definite if ∀ f ∈ K, 〈 f, f 〉 K ≥ 0 , neg- 

ative definite if ∀ f ∈ K, 〈 f, f 〉 K ≤ 0 , otherwise it is indefinite. A 

vector space K with inner product 〈·, ·〉 K is called inner product 

space. 

Definition 2 (Kr ̆ein space and pseudo Euclidean space) . An inner 

product space (K, 〈·, ·〉 K ) is a Kr ̆ein space if there exist two Hilbert 

spaces H + and H − spanning K such that ∀ f ∈ K, f = f + + f − with 

f + ∈ H + , f − ∈ H − and ∀ f , g ∈ K, 〈 f , g〉 K = 〈 f + , g + 〉 H + − 〈 f −, g −〉 H − . 

A finite-dimensional Kr ̆ein-space is a so called pseudo Euclidean 

space (pE). 

If H + and H − are reproducing kernel hilbert spaces (RKHS), K
is a reproducing kernel Kr ̆ein space (RKKS). For details on RKHS 

and RKKS see e.g. [35] . In this case the uniqueness of the func- 

tional decomposition (the nature of the RKHSs H + and H −) is 

not guaranteed. In [36] the reproducing property is shown for a 

RKKS K. There is a unique symmetric kernel k ( x, x ) with k (x, ·) ∈ K
such that the reproducing property holds (for all f ∈ K, f (x ) = 

〈 f, k (x, ·) 〉 K ) and k = k + − k − where k + and k − are the reproduc- 

ing kernels of the RKHSs H + and H −. 

As shown in [36] for any symmetric non-positive kernel k that 

can be decomposed as the difference of two positive kernels k + 
and k −, a RKKS can be associated to it. In [2] it was shown how 

the classical SVM problem can be reformulated by means of a sta- 

bilization problem. This is necessary because a classical norm as 

used in Eq. (2) does not exist in the RKKS but instead the norm 

is reinterpreted as a projection which still holds in RKKS and is 
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